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Abstract 
This dissertation addresses the problem of estimation and control in spark-ignited 

(SI) engines. In the first part of this thesis, we investigate the problem of estimating 

the ethanol content in an ethanol-gasoline blended fuel for use in flexible-fuel vehicles. 

A steady-state parametric model relating the engine speed, throttle angle, and air-fuel 

ratio to the fuel injector pulse-width is developed from physics. The parameters of this 

model are adapted and linked to the percentage of ethanol content via a suitably de­

fined metric. The proposed steady-state model structure is experimentally validated 

on a 5.4L V8 Ford engine at the University of Houston's Engine Control Research 

Laboratory (UH-ECRL). The developed ethanol content estimation methodology is 

justified based on the combustion chemistry and physics involved. The methodology 

developed has a distinct advantage over previously proposed methods as it uses only 

the existing sensor set on a production vehicle. 

The second part of the thesis examines the application of linear parameter vary­

ing (LPV) systems theory to SI engine sub-systems identification and control. LPV 

systems modeling and control have been investigated extensively in the literature. 

Nonlinear and/or time-varying systems can be cast into an LPV form and analyzed 

using the well established LPV controller synthesis techniques. In this thesis we 

present a method for identifying the model parameters of an LPV system and show 

how the LPV system identification problem can be reduced to a problem of linear re­

gression. This methodology is validated by applying it to identify the intake manifold 

dynamics of an SI engine both in simulations using GT Power as well as experimen­

tally at the UH-ECRL. Next, we consider the fueling control problem in SI engines. 

It is shown that the air and fuel path dynamics represent an LPV system with a 

parameter varying time-delay. Simulation study using the existing results in litera­

ture for design of an output feedback Tioo controller for the fueling control problem 

revealed the conservativeness of the delay-independent criteria. Hence, the focus of 

the last part of this thesis has been on developing new tractable results guaranteeing 
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closed-loop stability and %00 performance of LPV time-delay systems using the less 

conservative delay-dependent conditions. 
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Chapter 1 Introduction 

The term spark ignition (SI) engine refers to the internal combustion (IC) engine 

technology where the air-fuel mixture undergoes combustion when ignited by a spark 

from the spark plug. The fuel used in SI engines is primarily gasoline. The SI en­

gine, as we know today, was invented by Nicolaus Otto and the first prototype was 

run in 1876 [1]. This engine had an overall efficiency of 14%. The thermodynamic 

cycle for this engine follows the Otto cycle, so named in honor of its inventor. Since 

its inception, the SI engine has been one of the main sources of energy for trans­

portation. With an increasing emphasis on achieving substantial improvements in 

automotive fuel economy, automotive engineers are striving to develop engines having 

enhanced brake-specific fuel consumption (BSFC), and which can also comply with 

future stringent emission requirements. The SI engine technology has come a long 

way from carburetors to direct fuel injection, from no emission regulation to modern 

exhaust after-treatment technology. The silicon revolution made possible the use of 

digital controllers in the automotive industry and the control engineer has played a 

major role in developing today's modern engine sub-systems. Apart from increasing 

fuel economy and reducing emissions, the need as well as government mandate to 

lessen the nation's dependence on petroleum based fossil-fuels has led to increased 

research in the field of alternative fuel technology such as fuel cells, electric and hy­

brid vehicles and flexible-fuel vehicles (FFVs). In the first part of this dissertation, 

we address the problem of estimating the ethanol content in an FFV. In the second 

part, we investigate the use of linear parameter varying (LPV) techniques to identify 

and control different engine sub-systems. 

1 
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1.1 Flexible Fuel Vehicles 

A flexible-fuel vehicle or a dual-fuel vehicle is an alternative fuel vehicle with an 

internal combustion engine designed to run on more than one fuel, usually gasoline 

blended with either ethanol or methanol fuel with both the fuels stored in a common 

tank. Modern flex-fuel engines are capable of burning any proportion of the resulting 

blend in the combustion chamber and the fuel injection and spark timing are adjusted 

according to the actual blend as detected by an ethanol concentration sensor. The 

most common commercially available FFV in the world market is the ethanol flexible-

fuel vehicle. Though technology exists to allow ethanol FFVs to run on any mixture 

of gasoline and ethanol, from pure gasoline up to 100% ethanol (E100) [2], North 

American and European flex-fuel vehicles are optimized to run on a maximum blend 

of 15% gasoline with 85% anhydrous ethanol called the E85 fuel. This limit in the 

ethanol content is set to reduce ethanol emissions at low temperatures and to avoid 

cold starting problems during cold weather conditions, at temperatures lower than 11 

°C (52 °F) [3]. It is important to estimate the ethanol content in a blend accurately so 

that necessary optimization in terms of engine control strategy can be applied. The 

estimation of ethanol content in an FFV is the main topic of discussion in chapter 

2, where a study of ethanol fuel properties and their effect on SI engine performance 

is outlined. In the following section we introduce the LPV systems in the context of 

their relevance to engine control and the work in this dissertation. 

1.2 Linear P a r a m e t e r Varying Systems 

Linear parameter varying systems form a class of linear systems whose state-space 

entries depend continuously on a time-varying parameter vector p(t) that is assumed 

to be unknown in advance, but is constrained a priori to lie in some known, bounded 

set, and its value is assumed to be either measurable or estimated in real-time. The 

2 
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state-space representation of an LPV system is 

x(t) = A{p(t))x + BMt)Mt) + B2{p(t))u{t) 

z(t) = CMt))x{t) + Dn(p(t))w(t) + D12{p(t))u(t) (1-1) 

y{t) = C2{p{t))x{t) + D21{p{t))w{t), 

where x(t),w(t) and u(t) represent the state vector, the exogenous input vector, and 

the control input vector, respectively; z(t) and y(t) represent the controlled output 

and system measurement vectors, respectively. The system state space matrices define 

a continuous mapping as A, Bu B2, Ci, C2, Dn, D12, D2l : W -+ (Rnxn, R ^ . r ^ , 

R"*xri, R7^*"-, R ^ X ^ ^ ^ X " ^ j^xn™^ gu c j1 S y S t e m s play a very important role 

in the context of gain-scheduling and have been studied extensively in the litera­

ture [4,5]. LPV gain scheduling offers a distinct advantage over conventional adhoc 

gain scheduling approaches, since it involves direct synthesis of a controller rather 

than its construction from a family of local linear controllers designed by linear time-

invariant methods. Other benefit of using LPV techniques resides in the fact that 

most non-linear and/or time-varying systems can be cast into an LPV representa­

tion. This is not the topic of discussion here and the interested reader is referred 

to [5,6]. It is to be noted that the scheduling parameter p(t) in the LPV system rep­

resentation captures the time-varying or non-linear behavior of the original system. 

The knowledge of this scheduling parameter results in a systematic gain scheduling 

design guaranteeing closed-loop stability and performance over the entire range of pa­

rameter variation. The LPV control design approaches typically utilize norm based 

performance measures. In particular, the induced C2 norm is widely employed as a 

performance measure since this enables a degree of continuity to be maintained with 

linear T-L^ theory in the sense that when the plant is linear time-invariant (LTI) the 

approaches are equivalent to linear T-L^ design. The controller design involves solution 

to a linear matrix inequality (LMI) optimization problem [7-9], a convex problem [10] 

that can be solved efficiently in polynomial-time using existing solvers such as the one 

in Matlab. 

3 
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1.2.1 LPV System Stability and Performance Analysis 

Having introduced LPV systems in the previous section, we discuss the stability 

and performance analysis of LPV systems in this section. Stability of LPV systems 

can be studied by extending the Lyapnuov theory as applied to LTI systems. In order 

to discuss the stability and performance we present some definitions fundamental to 

the study of LPV systems. 

Definition 1.1 Given a compact set V C Rs, the parameter variation set Fp is 

defined as 

FP^{peC°(R+,Rs):p(t)eP}, (1.2) 

where C° is the set of piecewise continuous functions, K+ stands for the set of positive 

real numbers and W denotes a vector with 's' real scalars. 

Definition 1.2 Given a compact set V C Rs, finite non-negative numbers {z^}j=1 

and v = [v\, v<i, ••-, vs]
T, the parameter v-variation set Tp is defined as 

J%±{pe C1(R+,R") : p(t) £ V, |p,(*)| < ut}, (1.3) 

where C1 denotes the class of piecewise continuously differentiable functions. 

The parameter set T-p includes time-varying trajectories where the parameter varia­

tion rates are unbounded whereas Tj, denotes a subclass of J-j> where the time-varying 

parameter trajectories are assumed to have bounded rates of variation. Note that 

p € V denotes a vector in the compact subset of Rs. The notion of quadratic stability 

for LPV systems is given by the following definition [11]. 

Definition 1.3 Given a compact set P e l 5 and a function A e C(R s ,R"x n), the 

function A is quadratically stable over V if there exists a matrix P £ §++, such that 

for all p e F-p, 

AT(p)P + PA(p)<0, (1.4) 

4 
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where Sn denotes real symmetric n x n matrices and S"+ is the set of real symmetric 

positive definite n x n matrices. 

This notion of quadratic stability can be extended to parameter dependent quadratic 

(PDQ) stability [12] by replacing the positive definite matrix P by a continuously dif­

ferentiate matrix function P : Rs —> §" + such that P(p) > 0 and 

AT(p)P(p) + P(p)A(p) ± £ U g j < 0 (1.5) 

for all p G J-'p. If the function A is quadratically stable over V, then the unforced 

LPV system (1.1) i.e. with w — u = 0 defines a quadratically stable system. Further 

the quadratic stability implies exponential stability of the unforced LPV system. In 

the control design for LPV systems we typically use the induced £2 gain or the Hoo 

norm as a performance measure which is defined as 

Definition 1.4 The induced £2 gam (orl-L^) norm of the LPV system m (1 1) from 

w to z considering u = 0 is defined by 

\\Ttw\\oo= sup sup —fp, (1.6) 

where Tzw is an operator mapping w to z. \\w\\2 is the 2-norm of the exogenous input 

and \\z\\2 is the 2-norm of the desired controlled output vector. 

Now we give a sufficient condition to check if the induced £2-norm of an LPV system 

is less than a prescribed value 7 using a parameter-dependent Lyapunov function. 

Theorem 1.1 Given a compact set P C Rs, finite non-negative numbers { z ^ } ^ , 

and the LPV system in (1.1). If there exists a function W e C^R^S".,.), a positive 

scalar 7, such that W(p) > 0 and 

AT(p)W(f>) + W(p)A(p) + Yi±[i',d-^j BM W{p)Cj(f,) 

* " ' -7/„„ DIM < 0 C-7' 

5 
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for all p € F%> then the LPV system is parametncally dependent stable and satisfies 

the condition 1171. < 7 -

Proof. Refer to [11]. Theorem 1 1 is a generalized form of the well known bounded 

real lemma and is used to derive the existence conditions for control synthesis. 

Remark 1.1 The notation 2_\ =K') ls use-d t° indicate that every combination o/+(-) 

t = i 

and — (•) should be included in the inequality. This means that the above 3 x 3 in­

equality actually represents 2s different inequalities that correspond to the 2s different 

combinations in the summation and must be checked simultaneously 

Remark 1.2 In large symmetric matrix expressions, terms denoted by (*) will be 

induced by symmetry. For instance with S symmetric we have 

M + N+(*) + S • 

Q P 

M + N + MT + NT + S QT 

Q P 
;i.8) 

1.2.2 LPV Controller Synthesis 

In this section we review the LPV controller synthesis problem guaranteeing a 

prescribed level ofTioo performance. Given the LPV plant in (1.1) the gain scheduled 

output feedback problem is to find a nk — th order dynamic controller with a state-

space realization as 

(19) 
xk(t) = Ak{p)xk(t) + Bk(p)y{t), 

u{t) = Ck(p)xk(t) + Dk(p)y(t), 

such that the closed loop system formed by the interconnection of the open-loop LPV 

system (11) and the controller in (1.9) is internally stable and guarantees an upper 

bound on the induced £2 norm given by definition 1.4. Two different methods exist 

for the synthesis of gain-scheduled output feedback controllers for LPV systems [13]. 

We present here the basic characterization method. 

6 
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Theorem 1.2 Consider the LP V plant governed by (1.1), with parameter trajecto­

ries constrained by p € J-p. There exists a gam-scheduled output feedback controller 

(1.9) enforcing internal stability and a bound on the gain of the closed-loop system, 

whenever there exist parameter-dependent symmetric matrices X and Y, a parameter-

dependent quadruple of state-space data (AK, BK, CK, DK) such that the infinite 

dimensional LMI problem of (1.10) and (1-11) holds true. 

XA + BKC2 + (*) + J2 ± (". 
t = i ^ 

dp J 

A\ + A + B2DKC2 AY + B2CK + (*)-]£ ± U^) 

(XB, + BKD2l)
T 

Ci + D12DKC2 

[Bt + B2DKD21)
T 

C\Y + D\2Cx 

- 7 / 

Dn + Dl2DKD21 -ll 

< 0 ;i.io) 

x I 

* Y 
> 0 :i.n: 

In such a case, a gam scheduled controller of the form (1 9) is readily obtained using 

the following two step scheme. 

• Solve for N and M, the factorization problem 

I-XY = NMT. ;i.i2) 

7 
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• Compute Ak, Bk, Ck and Dk as 

Ak = N~\XY + NMT + AK - X(A- B2DKC2)Y) (1.13) 

-BKC2Y - XB2CK)M-T, 

Bk = N-1(BK-XB2DK), (1.14) 

Ck = (CK-DKC2Y)M-T, (1.15) 

Dk = DK. (1.16) 

Proof. See [13]. 

Remark 1.3 The LMI condition given by Theorem 1 2 corresponds to an mfinite-

dimensional convex optimization problem due to the parametric dependence To obtain 

a finite-dimensional optimization problem, the parameter-dependent matrix functions 

X and Y can be approximated using a finite set of basis functions and a finite griddmg 

of the parameter space can be used. As the LMIs are to be solved only at each of 

the grid points, this results in a set of finite-dimensional LMIs that can be solved 

numerically using commercial solvers. 

1.2.3 LPV Control in Automotive Systems 

In this section we provide a motivation to the use of LPV gain-scheduling as it 

applies to automotive engine control. Gain scheduling of automobile engine controllers 

began in the early 1970s in conjunction with the use of microprocessor-based air-fuel 

mixture control and in response to the dual imperatives of improved fuel economy and 

reduction of exhaust emissions Use of a catalytic converter requires precise control of 

the air-fuel ratio and necessitates feedback. This was traditionally accomplished using 

a signal from an exhaust gas oxygen (EGO) sensor located in the exhaust pipe. The 

EGO provides a two-state signal indicating that the air-fuel ratio is either lean or rich. 

Conventional (usually proportional plus integral) control results in a limit cycle about 

8 
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the desired value. By using asymmetric gains with respect to the sign of the error, 

the limit cycle and thus the nominal air-fuel ratio can be shifted. Note that there is 

a substantial transport delay (load and engine-speed dependent) from the time the 

fuel-air mixture is inducted until the signal appears at the EGO sensor [14]. There are 

additional aspects of air-fuel regulation where LPV gain-scheduling techniques may 

be employed. These include closed-loop control of exhaust gas recirculation (EGR) 

which has gained importance beginning in the early 1980s, and variable camshaft 

timing where gain scheduling efforts are reported beginning in the mid 1980s. This 

motivates the research in application of LPV and/or LPV time-delay systems theory 

to engine control, and is the focus of the last part of this dissertation. 

1.3 Outline of the Thesis 

The results presented in this dissertation have either been already published or 

submitted for publication [15-22]. Each subsequent chapter consists of an adapted 

version of one or more of these articles. In this setup, every chapter is written as 

stand-alone, and there might be some overlap between the contents of the chapters. 

An attempt has been made to keep the notation consistent throughout the dissertation 

to prevent any confusion. An outline of the thesis is provided below. 

In Chapter 2, we address the problem of estimating ethanol content in an ethanol-

gasoline blend of an FFV. We investigate the use of a model-based approach relying 

only on the sensor set existing on a production vehicle. A parametric adaptive model 

is proposed based on first-principles modeling. The proposed model structure has 

three-terms and is based on steady-state operating conditions of the engine. The 

model structure is tested for fidelity using experimental data obtained at the Univer­

sity of Houston's Engine Control Research Laboratory (UH-ECRL). Once the model 

structure is finalized we propose to use the changes in the model adapted coefficients 

9 
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and link them to the percentage of ethanol content present in the blend. More specif­

ically, we show that the three model coefficients form a vector whose length, or the 

2-norm of the vector relates to ethanol content percentage. This hypothesis is fur­

ther validated based on physics and the combustion chemistry. The methodology of 

ethanol estimation presented in this dissertation is a zero cost solution in the sense 

that we do not add any redundant sensor cost. 

Chapter 1 has already given a brief overview of LPV systems with its importance 

and applications. In chapter 3, we examine the problem of identifying parameters 

of an LPV system. We start with a discrete time input-output representation of an 

LPV system. For such a system the model coefficients depend on the LPV schedul­

ing parameter and their dependence is given by the basis functions. We simplify 

the LPV system identification problem to a problem of linear regression. The pro­

posed method is used to identify the intake manifold dynamics of a 5.4L V8 Ford 

engine. The LPV system identification methodology presented allows use of a single 

experiment to collect data and identify model parameters as opposed to an LTI ap­

proach where numerous experiments need to be performed corresponding to distinct 

operating speed-load conditions of the SI engine. 

Controlling the ratio of the air-fuel mixture in SI engines is a widely discussed 

problem in the automotive literature and the contents of chapter 4 are motivated 

by the same. However, in the material presented, we first discuss the analysis and 

control synthesis for LPV time-delay systems and then conclude the discussion with 

the fueling control problem as an application. This is mainly done to emphasize the 

fact that the work presented is the first in literature to discuss output feedback con­

trol of LPV time-delay systems in the delay-dependent framework. We investigate 

the conditions to satisfy asymptotic stability and Woo performance requirements for 

LPV time-delay systems. Our choice of the Lyapunov-Krasovskii functional to derive 

the stability and performance analysis conditions allows for fast-varying delays. The 
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analysis conditions derived are then relaxed using the so-called slack variables. The 

introduction of slack variables is shown to reduce the conservativeness and leads to 

an LMI condition for synthesis of a delayed feedback controller. Both state feedback 

and output feedback controller synthesis conditions are derived. We use two examples 

from literature to evaluate the performance of our method for the design of the state 

feedback controller. In the case of the output feedback controller design, these being 

the first results no comparison is proposed. However, the fueling control in SI engines 

is investigated to provide an application and validate the presented design method­

ology. We formulate the SI engine dynamics as an LPV system with a time-delay 

where the engine speed acts as a scheduling parameter. The time-delay appears as a 

parameter-varying delay with a known upper bound as well as a known bound on the 

rate of change of parameter variation. All this information is used in the controller 

design process. Simulations performed using a model in Matlab-Simulink validate the 

novel results presented. 

Finally, chapter 5 gives the conclusions, summarizes the important contributions 

of this dissertation work and provides remarks about future research directions. 
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Chapter 2 Model-Based Ethanol Blend 

Estimation in Flexible-Fuel Vehicles 

2.1 Introduction 

Petroleum based fossil fuels are a dominant source of energy for transportation. 

The United States (US) transportation sector relies on petroleum for 95% of its en­

ergy, consuming approximately 140 billion gallons of gasoline each year [23]. Light 

duty vehicles account for 77% of the transportation energy used. These figures indi­

cate our dependence on fossil fuels, mainly petroleum. Alternative fuels have been 

explored for several decades, but have attracted more attention recently due to rising 

petroleum costs and the pressing need to reducing vehicle emissions. In 2007, the 

federal government proposed a plan to reduce the US gasoline usage by 20% in the 

next ten years [24]. A key implication of this is the need for scientists and engineers to 

develop renewable and alternative fuels and such vehicles. Ethanol as an alternative 

fuel has attracted a lot of attention in recent years. Because of ethanol's excellent 

miscibility with common gasoline, it can be used as an additive to partially replace 

gasoline content of automotive fuel. Such mixtures are normally named after the 

amount or percentage of ethanol they contain. For example, a mixture containing 

85% ethanol and 15% gasoline by volume is referred to as E85. In the United States, 

E85 is used as an alternative to gasoline. Ethanol is used in high concentrations in 

some regions like Brazil, Sweden and North America, but globally it is used in lower 

concentrations of 10% or less. Even in regions where ethanol is used in high concen­

trations, gasoline is still widely used. As discussed in chapter 1, FFVs can operate on 

gasoline or any ethanol blend concentration. However, they need an adaptive engine 
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Table 2.1: Properties of gasoline and ethanol 

Property 

Chemical formula 
Composition (C,H,0) 

Lower heating value (MJ/kg) 
Self Ignition Temperature (°C) 

Density (kg/m3) 
Research Octane Number (RON) 

Stoichiometric Air-Fuel Ratio 
Dielectric Constant 

Latent heat of vaporization (kJ/kg) 
Boiling Point Temperature (°C) 

Gasoline 

C 4 — C12 
86,14,0 

42.4 
~ 300 

745 
92 

14.6 
2 

390 
20-300 

Ethanol 

C2H5OH 
52,13,35 

26.8 
420 
790 
111 
9.0 

24.3 
840 
78.5 

management system to support and meet the emission requirements without sacrific­

ing performance or drivability. Conventional gasoline is prepared through distillation 

of crude oil in refineries and is a mixture of many different hydrocarbon compounds. 

Ethanol is produced by fermentation and distillation of sugars, or by hydration of 

ethylene from petroleum. These differing production processes result in fuels with 

widely varying properties. The characteristics of ethanol differ from those of gasoline 

as shown in Table 2.1. 

Nakata et al. (2006) and the numerous references therein describe in detail the 

effect of ethanol fuel on SI engines performance. As observed from Table 2.1 ethanol 

has high anti-knock quality due to it high octane number as compared to gasoline. 

This allows the ignition timing to be advanced resulting in higher torque production. 

With El00 the engine torque increases by 20% as compared to 92 Research Octane 

Number (RON) gasoline fuel [25]. The high octane number of ethanol also allows 

engines to operate at higher compression ratios than that possible with gasoline. Ex­

perimental studies [26] have shown a 29% increase in engine power with E50 fuel, 

when the compression ratio is increased from 6:1 to 10:1. The use of ethanol as an 

alternative to gasoline results in reduction of harmful exhaust gas emissions. Reduc­

tion in NOx emissions is observed owing to the charge cooling effect which can be 

13 



www.manaraa.com

attributed to the higher latent heat of vaporization of ethanol [25,27]. Koc et al. in 

2009 conducted experiments with three different fuels (E0, E50 and E85) by running 

the engine at eight different engine speeds ranging from 1500 rpm to 5000 rpm in 

increments of 500 rpm. Stoichiometric air-fuel ratio was maintained during all the 

experiments and the engine was allowed to reach stable condition before any mea­

surements were recorded. Engine torque, fuel consumption and pollutant emissions 

(CO, HC and NOx) were measured during the experiments. The engine was normally 

run at the maximum brake torque (MBT) spark timings and no special optimization/ 

tuning was done for ethanol fuel. A significant reduction in HC emissions is observed 

with increasing ethanol content in the fuel and has been attributed to the oxygen 

enrichment caused by ethanol addition. 

The operation with ethanol provides improved torque and horsepower over gaso­

line. Feedgas emission levels are also lower than those with gasoline. However, this 

advantage is diminished at the tailpipe due to the long catalytic converter light-off 

times that result from the lower combustion temperatures which characterize alcohol 

fuels. The lower heating value of ethanol results in an increase in the brake specific 

fuel consumption (BSFC). However, increasing BSFC due to lower energy content of 

ethanol-gasoline blends may be improved by increasing compression ratio [28]. Con­

siderable hardware modifications are necessary to a dedicated gasoline engine to avoid 

the problems arising due to the corrosive nature of alcohol fuels [29]. Stodart et al. 

(1998) investigated the problem of improving cold start performance in FFVs and 

proposed the installation of a separate tank and injector to deliver gasoline to the 

combustion chamber during the cold start phase. 

To exploit the favorable properties of ethanol fuel and thus improve fuel economy 

and engine performance, it is necessary to accurately know the ethanol content in 

any fuel blend. One of the most important advantages of knowing the correct ethanol 
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content in a fuel blend is for the engine management system to supply appropri­

ate quantity of fuel during cold start and hence overcome any cold starting issues. 

Capacitance based sensors [30] could be used to differentiate the fuel blends based 

on the differing dielectric constant of ethanol and gasoline. However, such sensors 

have associated accuracy and reliability issues and with an after-market price tag of 

approximately $500 the sensors are cost prohibitive. Alternatively, ethanol content 

estimation can be realized by attributing the feedback based fuel correction after a 

refill event to the change in concentration of ethanol in the fuel blend. This exhaust 

gas oxygen (EGO) sensor based ethanol estimation is cost effective, as it involves no 

additional sensors but becomes unreliable in the case of mass air flow sensor errors. 

Typically, the MAF sensor has associated with it an error of ±7%. It has been shown 

in [31] that a 5% error in the MAF sensor reading results in a 30% error in percent 

ethanol estimation. This emphasizes the need of a robust approach to ethanol content 

estimation. 

Presented in [32] are the engineering challenges of estimating ethanol content on 

a sensor less system subject to real world issues. It is shown that the accuracy of 

estimating ethanol content is severely compromised due to the stacked-up production 

tolerances of the components involved. Ahn et al. (2008) presented a model-oriented 

approach investigating the sensitivity of ethanol content estimation to modeling and 

sensor errors. Specifically, errors in air charge estimate, mass air flow (MAF) sen­

sor, and manifold temperature sensor are considered. The conclusion points out the 

high sensitivity of ethanol estimation and motivates the need of redundant algorithms 

with fusion of other sensors. Ahn et al. (2009) propose the use of a manifold ab­

solute pressure (MAP) sensor along with the MAF sensor to estimate cylinder air 

flow under MAF sensor drifts and hence prevent severe mis-estimation of ethanol 

content in FFVs. Huff and Prevost (2001) have described a different way of looking 

at this problem, using engine roughness to determine the percent alcohol in fuel and 

compensate for any changes so that drivability is not affected. Under cold starting 
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conditions, the oxygen sensor takes a predetermined amount of time to warm up and 

provide reliable air-fuel ratio information. During this time the engine runs in open 

loop control and can run rough. Engine roughness which is the second derivative 

of engine speed can be used to determine if the engine is running lean and hence 

determine the extent by which the air-fuel ratio needs to be enriched. The varia­

tions in engine roughness are also caused by changes in the manifold air pressure 

and engine speed and hence, entry conditions have been defined to use the criteria of 

engine roughness for estimating ethanol content. The effect of ethanol concentration 

on cylinder pressure evolution in direct-injection flex-fuel engines has been studied 

in [33]. A physics-based lumped parameter model for cylinder pressure evolution dur­

ing the compression stroke in direct-injection (DI) engines is presented. Oliverio et al. 

(2009) and Ahn et al. (2010) proposed the use of an in-cylinder pressure sensor and 

presented experimental results. However, the proposed method requires the engine to 

operate in single injection as well as split injection modes to generate a residue that 

captures the charge cooling effect and hence requires modifications to the engine. A 

detailed investigation of analyzing various uncertainties involved in fuel blend esti­

mation for bio-diesel as well as ethanol-gasoline blends has recently appeared in the 

literature [34]. 

All the approaches reviewed involve the addition of an otherwise redundant sensor 

hence increasing production costs. In this chapter, a parametric adaptive model-

based approach to ethanol estimation is proposed. Using information from production 

sensors a model relating the fueling command to the engine speed,throttle angle and 

air-fuel ratio (AFR) is developed. Adaptation in the model parameter coefficients 

is used to estimate the fuel composition of the fuel blend. Experimental results are 

presented to validate the proposed approach. 
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2.2 Motivation 

Detailed in this section is the motivation for the fuel blend estimation approach 

presented in this work. A steady-state fuel path model structure is identified and 

used in the ethanol estimation process. Identifying a low order yet high-fidelity model 

structure is very important, as the accurate estimation of ethanol content is based on 

the identified fuel path model. The ethanol estimation strategy utilizes the observed 

change in model parameter coefficients to predict the ethanol content in an ethanol-

gasoline fuel blend. 

2.2.1 Model Structure Identification 

A comparison of the fuel properties for ethanol and gasoline shows a significant 

change in the stoichiometric ratio of combustion. For the same amount of air mass 

flow, 48.97% more by mass of E85 fuel, is required as compared to gasoline to achieve 

stoichiometry. As the modern day automobiles use a linear exhaust gas oxygen sensor 

in the fueling control loop, A = g, . ,.—'—r-.—-T-TB is maintained close to unity with ex-

cursions happening only during short transients or as a result of catalyst modulation. 

In an SI engine running in closed-loop air-fuel ratio control, the fuel mass flow relates 

linearly to the air mass flow and inversely to the stoichiometric AFR (AFRS) of the 

fuel. Engines are often equipped with a MAF sensor that estimates the air flow past 

the throttle plate. However, MAF sensors are prone to aging and drift errors [35]. To 

overcome this problem, the MAF sensor is eliminated in our work and the air-flow 

is characterized using only throttle angle and engine speed information. The fuel 

injector pulse-width is chosen as an output. 

To motivate our model formulation we present some typical experimental results 

obtained of our engine facility at the UH-ECRL. Shown in Fig. 2.1 is the fuel injector 

pulse-width (PW) plotted as a function of throttle position and engine speed, for three 
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Figure 2.1: 3-dimensional plot showing the variation in fuel pulse-width as a function 
of throttle position and engine speed, for three fuel types tested on a 2005 Ford 5.4L 
PFI engine 

different fuel blends with the engine running in closed-loop fueling control. Throttle 

position is measured using an existing sensor, which feeds a voltage signal to an analog 

to digital converter (ADC). The output of ADC is in counts and relates directly to 

the throttle angle opening. Shown in the 3-dimensional (3-d) plot of Fig. 2.1 is a 

comparison of the fuel injector's pulse-width for different fuels under specific steady 

state conditions of throttle position and engine speed. Each point on the 3-d plot 

corresponds to one steady state operating point of the engine, where the throttle was 

held fixed and the speed was controlled using a dynamometer load. With E10 fuel, 

the pulse-width was recorded at approximately 35 such steady state points. Similar 

tests were repeated with E40 and E85 fuel. It is to be noted that the pulse-widths 

corresponding to a particular fuel-blend cloud together. Thus, it can be observed 

from Fig. 2.1 that fuel PW is a good indicator of the fuel blend for similar operating 

conditions of the engine. This sets the foundation of this work. To summarize the 
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objective, we seek a steady state model of the form 

PW = f(xl>\N>,\k), (2.1) 

where PW is the fuel pulse-width command, ip is the throttle angle, N the engine 

speed and A is the universal exhaust gas oxygen (UEGO) sensor measured normalized 

air-fuel ratio. In (2.1), / is a polynomial function in the variables ip, N and A. The 

powers i,j,k G Z where Z denotes the set of integers. The variable A is included in 

the required model structure to account for any non-stoichiometric operation of the 

engine, as dictated by the catalyst modulation controller. 

2.3 First Principles Based Model 

A physics-based approach is used to motivate the model structure relating engine 

speed, throttle position and air-fuel ratio to fuel pulse-width command in an SI engine 

under steady-state conditions. A mean value model of an SI engine is derived and 

simplified to a low order polynomial-type model to be used in determining appropriate 

regressor-type models. 

2.3.1 Air Path Dynamics 

The air induction system on an SI engine consists of a throttle body, intake mani­

fold and intake valves. Mathematical model for the air path of an internal combustion 

engine is well established and can be explained by the intake manifold filling and emp­

tying dynamics [1]. The dynamics governing the intake manifold pressure is obtained 

by differentiating the ideal gas law, 

PmVm = mRTm, (2.2) 

where Pm, Vm, Tm and m denote pressure in the intake manifold, volume of the intake 

manifold, temperature and mass of the air in the intake manifold, respectively. R is 
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the ideal gas constant. Differentiating (2.2) gives 

• RTm . mR • 
^m = "T^"l + -T^Tm- (2-3) 

Due to slow temperature variation the Tm term has been shown to not contribute 

significantly to the manifold dynamics and can be neglected [36]. The net mass flow 

rate of air into the intake manifold is the difference of the mass air flow past the 

throttle, matth and the air flow into the cylinders, ma>cyi. The throttle mass air flow 

rate, ma,th
 c a n be modeled using standard orifice equations for one-dimensional steady 

compressible flow [1] as 

ma>th = CdAtk(i;)-^r(^y (2.4) 

where ip is the throttle angle, Ath(i>) is the throttle plate open flow area, Cd is the 

flow discharge coefficient and Pa, Ta denote the ambient pressure and temperature, 

respectively. The functions Ath{ip) and T f -̂ p-) are given by 

^ 0 / 0 = ^ ( 1 - C O S T / 0 , (2.5) 

where dth represents the throttle plate diameter, and 

T i > ) - { v M ^ > «''>(*):' <,6, 
a 

1 * {&y-\ «rP<(^y->. 
The constant 7 = 1.4 is the ratio of specific heats for air and rp = ^2L. For ethanol 

content estimation, a polynomial approximation to the nonlinear equation in (2.4) is 

sought. Equation (2.5) can be written as a Taylor series expansion leading to 

M*) = ^ ( 1 - 1 + ^ - ^ + - ) M 

~ ao^2 + aiV>4, (2.8) 

for some coefficients a0 and a\. We consider engine operation at throttle angles result­

ing in un-choked air flow conditions. In a naturally aspirated engine Pm < Pa, except 
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at wide open throttle conditions, when Pm —> Pa. Under these assumptions, the 

expression for the function T (^p- J can be expanded using the generalized binomial 

theorem as 

p 
-^\ i -

7 - 1 ' 

27 
7 - 1 

KPa) 
r l 

l(W 
Pn 

T - l 

1 fPrr 
2-f-l 

1 ( P \ ~^~ 

2 V Pa J S\Pa 

b0pi+hPm+b2p^\ (2.9) 

for some coefficients bo, b\ and b2. Substituting the value of 7 in (2.9) results in 

P 
~p~n 

6oP! + 61Pm + 62pI 2.10) 

Substituting the expressions (2.8) and (2.10) in (2.4) leads to a polynomial expression 

for mass air flow past the throttle plate as 

Pn 
ma,th CH 

y/RTa 
[a0xP2 + ai^){bQPl + btPm + b2Pl). (2.11) 

The coefficient of discharge Cd is a function of the throttle angle. However, this effect 

can be lumped in the a, coefficients and hence no separate polynomial dependence is 

considered. This leads to the polynomial expression 

rha,th ~ c0iJ
2PZ + cxxj/Pm + c2iJ

2Pl + cz^Pl + c^APm + c^P'Z (2.12) 

for some coefficients Q. This completes the approximation for mass air flow past the 

throttle plate in a polynomial form. 

The dynamics governing intake of air charge into the cylinders, can be modeled 

by comparing engine behavior to a volumetric pump [1,37]. The cylinder air flow for 

a 4-stroke engine is given by 

rivolPcmYdN 
^a,cyl (2.13) 
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where r\vo[ is the volumetric efficiency, pttim is the density of air in the intake manifold 

and Vd is the total displaced volume of all cylinders. Using the ideal gas law in (2.2), 

(2.13) can be written as 

rha,cyl = !1f§^Pm- (2.14) 

As is a common practice [38,39], the volumetric efficiency can be expressed as a 

polynomial function of manifold pressure Pm and engine speed N as 

r}vol = d0 + dxN + d2N
2 + d3N* + dAPm. (2.15) 

Substituting (2.15) in (2.14) gives 

maiCyi = e0NPrn + elN
2Pm + e2N

zPm + e3N
APm + eANPl 

« e0NPm + e1N
2Pm + e2N

3Pm + e4NP^ (2.16) 

where the coefficients e, are given by, e,= dl2^ . Under steady state operation, (2.3) 

gives 7Jiatth = rna,cyi- Equating (2.12) and (2.16) permits a solution to mass air flow 

into the cylinders, using only engine speed N and throttle angle I/J. The variable Pm 

is thus eliminated. This leads to an expression involving non-integer powers of Pm. A 

simplified model can be obtained by considering only integer powers of Pm in (2.12) 

as 

ma,th w Ciip2Pm + c5ip
4Pm. (2.17) 

Solving for Pm from (2.17) and (2.16) and substituting back in (2.17) gives an ex­

pression for mass air flow into the cylinders, MAFcyi as 

MAFcyl = C-^(-eQ-e1N-e2N
2-e,N" + cl^- + cJ^ 

C"r (-e0 - eiN - e2A2 - e3iV
3 + cX + cX 

e3 V N " N. 
~ M2 + M2N, (2.18) 

where in the approximation only the first few significant terms are considered and 

/o, / i are model coefficients. Equation (2.18) needs to be divided by the engine 
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speed to convert the mass air flow rate from g/sec to g/cycle or g/intake-event. 

This is necessary as the steady state model relates the fuel PW commanded by the 

Powertrain Control Module (PCM), a per intake event quantity, to the air flow per 

cycle. Hence, the mass air flow rate into the cylinders per intake event is given as a 

function of throttle angle and engine speed as 

MAFcyl/intake = fjL + fxtf. (2.19) 

2.3.2 Fuel Path Dynamics 

Fuel path dynamics have been studied extensively in the past [39,40]. For a port 

fuel-injected system, the fuel puddling phenomenon is used to explain the dynamics 

relating the injected fuel mass to the fuel mass actually entering the cylinders. Under 

steady-state operation of the engine, the fuel mass in the cylinder would equal the 

injector command. The fuel system is designed such that the volumetric fuel flow 

rate is proportional to the injection pulse-width command as given by 

PW = Kfpwmu, (2.20) 

where Kfpw is a constant characterizing the fuel injector's slope and rhfiC is the fueling 

command, in mass from the PCM. Fuel injectors' are usually specified by the rate at 

which they can inject fuel, for example cc/min or lb/hr. Fuel injectors' slope is the 

inverse of this quantity. Under steady state operation, the actual fuel mass flow in 

the cylinders is equal to the fueling command, giving the equation 

rhftCyi = rhftC, (2.21) 

where rhfiCyi is the actual fuel mass in the cylinders. 
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2.3.3 UEGO Sensor Dynamics 

The UEGO sensor is used to measure the air-fuel ratio in the exhaust gas of an 

SI engine. The UEGO sensor located in the exhaust manifold reads the normalized 

air-fuel ratio A which is defined as 

* = ^ - <2-22> 

where AFRS is the mass ratio of air-fuel for stoichiometric combustion. Associated 

with the UEGO sensor dynamics is a time delay and a first order lag [38]. The delay 

is a result of the transport of exhaust gas species from the cylinder exhaust port 

downstream to the location of the UEGO sensor. The first order lag captures the 

dynamics associated with the gas mixing as well as the sensor response. In frequency 

domain, this results in the following expression for the sensed value of the normalized 

air-fuel ratio A 

A(s) = e-Ta
:^-jXcui{s), (2.23) 

where T, r denote the time delay and the time constant respectively. The in-cylinder 

AFR denoted as Xcyi is given as 

Kyl = AFR. • ( 2 ' 2 4 ) 

Under steady-state operation As equals Acy/. Substituting (2.19), (2.20) and (2.21) in 

(2.24) results in a steady state model for the fuel injection PW command 

pw = T7fFk{f4 + ^ ) - (2'25> 
A Taylor series expansion of the function j in the vicinity of stoichiometry gives 

\ = 1 - 1 ( A - 1 ) + -.-

« 2 - A . (2.26) 

Use of the above Taylor series approximation for j is justified as 0.98 < A < 1.02 near 

stoichiometry which is the typical excursion for catalyst modulation. Substituting 

24 



www.manaraa.com

(2.26) in (2.25) gives 

pw = £t(4+^2) ( 2-A ) 

As a final outcome the following modification of (2.27) is proposed 

PW = M 2 + 02 (jj) + 03A, (2.28) 

where 9i form the model coefficients (parameters). The advantage of (2.28) over 

(2.27) is that the number of regressor multiplications are reduced. This form relates 

sensor faults to specific coefficient(s) within the model and from this isolation, sensor 

diagnostics can be performed. Combining the sensor diagnostics component of (2.28) 

along with its ethanol estimation capability enables the estimation robustness. 

2.4 Description of the Experimental Facility 

This study was undertaken at the University of Houston Engine Control Research 

Laboratory. The engine and dynamometer setup is as shown in Fig. 2.2. The engine 

used is a 2005 Ford 5.4-L V8 sequential multi-port fuel injected, spark ignition engine, 

controlled by a Ford production PCM. The interface to this PCM is provided by a 

memory emulator. The engine is equipped with the production sensors. The sensors 

of interest are the throttle position sensor, crankshaft position sensor and the UEGO 

sensor. The software used for data acquisition and throttle reference commands is 

by Accurate Technologies. The software runs on a Dell computer which communi­

cates with the memory emulator via the USB port. The software has two compo­

nents called the "ATI VISION" and the "ATI No-Hooks". The ATI VISION allows 

for the monitoring and measurement of signals that the PCM broadcasts, whereas 

the ATI No-Hooks allows access to RAM variables internal to the PCM, which are 
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Figure 2.2: Engine and dynamometer at the Engine Control Research Laboratory, 
University of Houston 

otherwise only viewable or measurable. The engine is coupled to a 175-hp eddy cur­

rent dynamometer controlled by a DyneSystems InterLoc-V controller. To achieve 

steady-state at different operating conditions, the throttle plate was controlled using 

the No-Hooks software, whereas the torque load on the engine was controlled using 

the dynamometer controller. Fuel injectors were left in control of the Ford PCM. 

2.5 Main Results 

The steady-state fuel pulse-width model (2.28) forms the basis for the ethanol 

estimation methodology proposed in our work. The model coefficients (parameters) 

are related to the percent ethanol content in the fuel blend. A recursive least squares 

(RLS) identification approach is used to identify on-line the model parameters during 

steady state engine operation. A metric based on the identified parameter coeffi­

cients is proposed that can be linked directly to the ethanol content present in the 

ethanol-gasoline fuel blend. Specifically, we propose to use changes in the length of 

the coefficient vector to identify a change in the fuel ethanol content. The presented 
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ethanol content estimation methodology is further correlated to combustion chem­

istry. In the next sub-section we present the experimental validation of the proposed 

model structure followed by validation of the proposed ethanol content estimation 

method. 

2.5.1 Experimental Validation of the Proposed Model Struc­

ture 
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Figure 2.3: Steady state operating points in terms of mass air flow and engine speed 

Seven different fuel blends obtained by volumetric mixing of gasoline or E0 and 

E85 are used in this study. For validation purposes, a Siemens fuel composition sensor 

is used to measure the actual ethanol content in the fuel-blend. With a known fuel 

composition in the tank, the engine is operated at steady-state covering the speed - air 

mass points as shown in Fig. 2.3. At each steady-state, the engine speed is controlled 

using the throttle, load is controlled using the dynamometer and all the relevant 
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Figure 2.4: Evolution of the parameter trajectory for ElO fuel blend 

data recorded using the ATI-VISION recorder software. RLS parameter estimation 

is used to identify the model parameters. Prior to parameter estimation, the recorded 

variables are scaled to provide magnitude normalization. The engine speed in rpm is 

divided by 1000 whereas the throttle position measured in counts is divided by 100. 

A detailed analysis of parameter estimation using RLS can be found in [41] and [42]. 

Shown in Fig. 2.4 is the parameter convergence, as the RLS algorithm proceeds with 

the experimental data obtained using ElO fuel. Each sample represents one steady 

state operating point of the engine, where the engine speed and throttle position are 

held constant. As is evident from Fig. 2.4, the theta coefficients converge to their 

steady-state values after approximately 25 samples of data, which is approximately 

< 10 seconds on a Dell machine with Intel core 2 Duo, 1.8 GHz processor and 2 

GB RAM. Shown in Fig. 2.5 is a comparison of model estimated fuel PW command 

with the actual fuel PW command from the PCM for ElO fuel. The values of the 

estimated unknown model parameters #, for all fuel blends, as identified by the RLS 
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Figure 2.5: Comparison of actual V/s model estimated fuel pulse-width for E10 fuel 

estimation algorithm are shown in Table 2.2. Also, presented is the parameter vector 

length LEXX which is the 2-norm of the estimated parameter vector 6. The accuracy 

of each model is measured by a model fit calculation defined as 

Model Fit (%) - (l " y ~ ^ x 100, (2.29) 

\y — mean{y)\\j 

where y is the actual fuel PW and y denotes the model estimated fuel PW. The 

model fit used here is the R2 coefficient of determination, a statistical measure of 

how well the regression line approximates the real data points [43]. In Table 2.2 it is 

worth noting that as expected the coefficient vector length increases with increasing 

percentage of ethanol content in the fuel blend. 

2.5.2 Ethanol Content Estimation Methodology 

Presented in this section is a methodology for estimating the ethanol content in 

a given fuel blend. The fidelity of the proposed model structure has been validated 
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Table 2.2: Model parameters, model fit, vector length and angles for the seven fuel 
blends tested 

0i 
02 
03 

Model Fit (%) 
Vector Length LExx 
Vector Angle (in °) 

EO 

1.258 
2.145 
-4.95 
94.28 
5.539 

0 

E10 

1.32 
2.234 
-5.26 
95.22 
5.865 
0.457 

E30 

1.429 
2.337 
-5.585 
92.41 
6.221 
0.719 

E40 
1.473 
2.461 
-5.778 
94.5 
6.451 
0.356 

E60 
1.591 
2.692 
-6.198 
92.36 
6.942 
0.131 

E70 

1.662 
2.802 
-6.527 
93.6 

7.295 
0.194 

E85 

1.799 
3.012 
-7.084 
93.42 
7.91 
0.385 

using experimental data. As has been observed the model parameters change with 

varying ethanol content. The three model parameters [0\ 02 9j\T form a vector in 

the 3-dimensional space spanned by the three input regressors. The parameter vector 

corresponding to E0 fuel is considered as a reference (nominal) vector denoted as 

eE0=[9f° #2
E0 6£°}T. The length of this vector LE0 acts as a reference length for 

comparison. Let the normalized vector length be defined as 

LEXX — LEO 
L EXX — L E0 

(2.30) 

The normalized vector length denotes a percentage change with respect to the refer­

ence vector length LEo- The vector length LExx and the normalized vector length 

LEXX as a function of percent ethanol content is shown in Fig. 2.6. The ethanol 

content estimation methodology is based of predicting the percent ethanol in a fuel 

blend knowing the normalized coefficient vector length associated with it. Shown in 

Fig. 2.7 is a least squares curve fit through the LEXX data points used to design the 

fuel blend estimator. The fuel-blend estimator equation is given by 

% Ethanol = -156.76 l \ x x + 267.476 LEXX. (2.31) 

It is noted that a variation in the ethanol content will change the length of the 

parameter vector 0 but will not affect the directionality. Potential changes in the 

directionality of the vector would imply a faulty situation, e.g., a sensor fault and 
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Figure 2.6: Vector lengths as a function of percentage ethanol content in the fuel 
blend 

Figure 2.7: Ethanol blend estimator curve 
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can be used to provide diagnostics information. Considering the parameter vector 

corresponding to EO fuel as the nominal vector, the angle made by each of the other 

vectors corresponding to different fuel blends can be calculated using the dot product 

and is presented as the last entry in Table 2.2. It is evident that the angular variation 

is within 1° implying that all the parameter vectors point in the same direction. 

2.5.3 Correlation with Combustion Chemistry 

Presented in this section is a relation between the coefficient vector length and 

the stoichiometric fuel-air ratio (FARS). The complete combustion of a general hy­

drocarbon fuel with average molecular composition CaHb with air is [1] 

CaHb +U + ^\ (02 + 3.773iV2) = aC02 + b-H20 + 3.773 (a + ^\ N2. (2.32) 

Let y = b/a be the ratio of hydrogen to carbon atoms in the hydrocarbon fuel. 

The molecular weights of oxygen, atmospheric nitrogen, atomic carbon and atomic 

hydrogen are respectively, 32, 28.16, 12.011 and 1.008. The stoichiometric air-fuel 

ratio is given by 

A\ (FY1 _(l + y/4)(32 + 3.773 x 28.JL6) 

FJs \AJ s 12.011 + 1.008y 

For gasoline y = 1.87 [1] and (2.33) gives the stoichiometric air-fuel ratio for gasoline 

as 14.6. The stoichiometric combustion equation for ethanol E100 is 

C2H5OH + 3(02 + 3.7737V2) = 2C02 + 3H20 + 11.32AT2, (2.34) 

and (A/F)s = 9.00. Ethanol-gasoline blend is denoted by EXX, where XX denotes 

the percentage of ethanol by volume in the mixture. The AFRS and also the FARS 

variation as a function of ethanol content can be determined using (2.32) and (2.34) 

where (2.32) and (2.34) are multiplied by the number of moles of gasoline and ethanol 

present in the mixture. The number of moles n present in volume V of a particular 

fuel depend on the density p and the molecular weight M of the fuel. Knowing the 
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densities and molecular weights and using the fundamental relation V = ^ the 

number of moles present in a volumetric mixture can be calculated. To compare the 

variation in FARS and normalized coefficient vector length LEXX as a function of 

percent ethanol content, we define a normalized value for the stoichiometric fuel-air 

ratio as 

~ s = FAR-FARS,E0 ( 2 3 5 ) 

The parameter vector length LExx is indicative of the percentage ethanol content 

based on the fact that the model parameters have incorporated the effect of FARS 

and KfpW among other engine parameters, see (2.27). Given Kfpw is a constant allows 

a meaningful comparison of LEXX
 a n d FARS. A fuel injector delivers a fixed volume 

of fuel at constant pressure and pulse-width. So for fuel with varying density the same 

PW would result in different mass of fuel being injected. This in-effect implies that 

Kfpw actually changes with changing ethanol content if not accounted for explicitly by 

the PCM software which is the case at hand. Hence, to have a meaningful comparison 

the vector lengths need to be corrected based on the density of the fuel under test. 

Table 2.1 specifies the density for EO and E100 fuels. Assuming a linear change in 

density, as the ethanol content is changed from 0 % to 100 % a scaling to the vector 

length is proposed as 

LEXX,P = LExx X •—, (2.36) 
PEO 

where LExx,P is the density corrected vector length for fuel blend EXX. PEXX and 

PEO denote the density of the fuel blend EXX and EO respectively. The corrected 

vector length is then normalized using (2.30) and shown in Fig. 2.8 is the combined 

plot of LExx,P and FARS as a function of percentage ethanol content in the fuel 

blend. As is evident from Fig. 2.8 the plots coincide as expected. This analysis 

validates the proposed ethanol estimation methodology based on the chemistry of the 

process involved. 
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Figure 2.8: Density corrected normalized vector length and FARS as a function of 
ethanol content 

2.6 Chapter Conclusions 

In this chapter, a method for estimation of ethanol content in flex-fuel vehicles 

using the existing sensor set is presented. Throttle position measurement along with 

engine speed, gives an estimate of mass air-flow rate in the cylinders. Use of throttle 

position sensor as opposed to the MAF sensor, eliminates any sensitivity issues asso­

ciated with the MAF sensor. A parametric model relating the fueling command to 

ethanol content is developed based on first-principles modeling of the air path and 

fuel path dynamics. The model coefficients are estimated using RLS methods and are 

shown to capture the effect of changing fuel composition. Adaptation in the model 

coefficients is used to estimate the ethanol content. The proposed approach has been 

validated experimentally, at the UH-ECRL. This work has focussed on providing a 

proof of concept, relating the estimated parameter vector length to fuel composition. 

Sensor measurement inaccuracies/uncertainties can be addressed with the proposed 
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approach by looking at the direction of the coefficient vectors to provide a diagnostic 

capability. This additional diagnostics capability is deemed out of the scope of the 

current work and hence not investigated here. 
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Chapter 3 Parameter-Dependent 

Identification of the Intake Manifold 

System Dynamics in Spark Ignition 

Engines using LPV Methods 

3.1 Introduction 

The literature on identification of linear time-invariant (LTI), as well as linear 

time-varying (LTV) systems is vast [41,42]. However, the literature on identifica­

tion on linear parameter-varying (LPV) systems is yet to mature. The problem of 

LPV system identification based on state-space representation has been the focus of 

interest in the past few years. The first work addressing the identification of LPV 

systems with linear fractional parameter dependence appears in [44]. It showed that 

the identification of an LPV system with one scheduling parameter, one input and 

full state measurement can be cast as a recursive least-squares problem. Furthermore, 

it was shown that the parameter estimates are consistent in a noise-free case and can 

be further extended to a noisy measurement case, by considering an instrumental 

variable approach. Some of the recent work on state-space based LPV system identi­

fication can be found in [45,46] whose methods are based on sub-space identification. 

A nonlinear optimization problem needs to be solved to search for the optimal pa­

rameters. Verdult provides a general framework for sub-space identification of LPV 

systems, describes a practical dimension reduction method for subspace identifica­

tion and formulates the non-linear optimization based identification problem [45]. 

Some drawbacks of these methods are the long time required for the optimization 
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methods to converge, as well as, the absence of guarantees for convergence to the 

global optimizers. There are few results reported on input/output-based LPV sys­

tem identification. The LPV system identification problem based on an input-output 

description of the LPV systems has been investigated in [47-49]. The authors in [47] 

study the identification of discrete LPV systems and derive conditions on the persis­

tency of excitation in terms of the inputs and the scheduling parameter trajectories. 

An excellent work describing tn detail the different methods for identification of LPV 

systems is Toth's doctoral dissertation [50]. The approach we consider in this chapter 

for identification of LPV systems is somewhat similar to the one in [47], where some 

basis functions of the appropriate LPV parameters are defined a priori. However, 

the formulation is different in the sense that the method presented here introduces 

a new regressor vector to augment the basis functions and the system data using a 

Kronecker product. Using the proposed formulation, it would be possible to utilize 

standard least-squares optimization methods in the literature. 

The presented LPV system identification is motivated by the modeling and control 

of internal combustion engines. The process model for an internal combustion (IC) 

engine with spark ignition is inherently nonlinear. The dynamic equations for the 

manifold system of an SI engine are developed by employing the principles of conser­

vation of mass and energy, and assuming that the vaporized constituents satisfy the 

equation of state. We seek a parameter identification approach to enable us to rely on 

the engine's input-output data to adapt the system model in real-time. This would 

be beneficial for the design of adaptive controllers based on the identified parameters. 

Due to the nonlinear nature of the system dynamics governing the intake manifold, 

in this chapter we tackle the system identification problem in an LPV setting, where 

a quasi-LPV model is initially extracted from the nonlinear model. 

This chapter is organized as follows. This section has given an introduction and 

a brief literature review of system identification as applied to LPV systems. Section 
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3.2 describes the proposed LPV identification framework and presents the main re­

sults of this chapter. In section 3.3 we discuss the development of a first-principles 

based model for intake manifold in SI engines, as an application of the proposed re­

sults. Section 3.4 shows how the first-principles based model derived in section 3.3 is 

cast into an input-output form suitable for the application of the proposed identifica­

tion method. In section 3.5 we give an application of the LPV system identification 

methodology presented using an SI engine model developed in the simulation envi­

ronment of GT-Power. A further validation of the proposed method follows in section 

3.6 where we have used experimental data obtained from the SI engine at UH-ECRL. 

Finally a conclusion to this chapter is provided in section 3.7. 

3.2 Approach to LPV System Identification 

The LPV system identification problem based on an input-output description has 

been investigated in [47,48]. In this section, we discuss the problem under study and 

present an RLS-based algorithm for its solution. It is noted that the identification 

method we propose here is different from that in [47] as explained before. Consider a 

quasi-LPV system represented as 

A(q~\ Pk)y(k) = B{q-\ pk)u(k) + nk, (3.1) 

where q~l is the backward shift operator, pk is the vector of external measurable 

parameters, and nk is the modeling error consisting of bounded disturbance and 

unmodeled dynamics. In the above formulation, u(k) and y(k) are the sequences of 

the inputs and outputs, respectively. Notice that the system represented by (3.1) 

would have a structure similar to a linear time-invariant system if the parameters pk 

were frozen. The polynomials A and B are defined as 

Mq~\pk) = l + ai(pk)q-x + ... + an(pk)q~n, 

B{q~\ pk) = bMq-1 + ... + bm{pk)q-m. 
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N-l 

(3.3) 

The coefficients of the polynomials A and B have the structure 

Ot(pk) = a° + fi{Pk)al + ... + fN-i(pk)a[ 

b3{pk) = b°3 + h(pk)b] + ... + fN^(pk)b?-\ 

where i € { 1 , . . . , n}, j € { 1 , . . . , m} and a[, br
3 are constant values and fr(pk) 

are known basis functions of the online measurable variables pk. Reformulating the 

original LPV system (3.1) by concatenating the vectors resulted from the collected 

data yields 

A(q-\pk)= l + g - V i + alA af-Viv-i)-

. + <?-"« + ai / 1 + ... + <-1 / iv- i) , 
(3-4) 

B(q~\ Pk) = q-'ib0, + b\f1 + ... + b? "Viv-i) + • • • 

+q~m(b°m + blnfi + -.- + b»-ifN-1). 

Substituting the above two equations back into the LPV model (3.1) results in the 

compact form 

y(k) = <f>kz. + n(h), (3.5) 

where 

k = l-y{k-l),-y{k-2),...,-y(k-n); 

u(k — 1), u(k — 2) , . . . , u(k — m)\ 

is the regression vector and we have 

a? + a\h + J- nN~1f 
+ &i J N-l 

6? + b\h + ... + &r7iv-i 

b°m + blh + . . . + bt'fN-l 
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where V* = al-> • • • > an-> V\i • • ' ' "n 
for i — 0 , . . . , N — 1. Finally, it is easy to obtain 

the expression 

y(k) = rkQ + n{k), (3.6) 

where 

Gk ® <Pk, Gk 

(v°r>(v i)r
I 

l) / i) • • • i /W-i 

Here 0 e 7^(m+n) iVxl is the vector including the unknown variables of the input-output 

representation of the LPV system in (3.1), and <S> denotes the Kronecker product. Due 

to the determined structure in (3.6), a classical parameter identification algorithm 

such as RLS or LMS may be used. For the linear regressor model, an iterative 

scheme is used as given by 

©fc+i = @fc + AfcL kt->k (y(k) n®k (3.7) 

where Xk is the forgetting factor and (.) represent the estimates. A Weighted Re­

cursive Least Square (WRLS) method is used to determine the iterative equations 

for updating Lk at each step. To this purpose, we consider the cost function to be 

minimized as 

t 

2 
V{t^) = \Y^\^{y{k)-YlQ)\ (3.8) 

k=\ 

The equations obtained to solve the above problem iteratively are 

Pk-iTk 
Lk = 

Pk 

\ + rT
kPk-irk 

I 

A 
Pk-k-l 

Pk-l^k^kPk-l 

(3.9) 

(3.10) 
A + r^ Pfc-iFfc 

It is noted that the described procedure for parameter identification works only for the 

LPV systems including a single output; however, the method can be easily extended 
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for systems with multiple outputs. Following the same lines as in [41], the iterative 

equations obtained for MIMO systems parameter identification are 

Lk = pfc_!rfc(AAfc + r ^ p ^ r * ) - 1 , (3.11) 

Pk = I [Pk-i - Pk-iTk(\Ak + rlP^T^-TlP^] , (3.12) 

and the estimate of the parameters is updated from 

Qk+1 = Qk + \Lk (y(k) - r [0 f c ) . (3.13) 

The above iterative equations are determined from minimizing the cost function 

V(t, 9) = \ X ; V"fc (y(k) - TT
ke)T A,"1 (y(k) - TT

kQ), (3.14) 

z k=\ 

at each iteration. Note that in the above cost function the matrix A^ is used to weight 

the different output channels in the cost function. 

3.3 Phenomenological Modeling of the Intake Man­

ifold System in SI Engines 

In this section, we describe the steps necessary for identification of parameters 

of interest using a simplified nonlinear model of the intake manifold system of SI 

engines. An application of LPV gain scheduling to charge control of an SI engine 

appears in [51,52], where an LFT model of the intake model is derived. Here, we 

follow the approach presented in [15] to model the dynamics of the intake manifold 

of an SI engine. For the sake of completeness, the model is described here. 

The intake manifold filling and emptying dynamics of an SI engine can be repre­

sented as [1] 

Pm = -r~{matth - rhaiCyi), (3.15) 
Vrr, m 
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where Pm denotes the pressure in the intake manifold, Vm represents the manifold 

volume and Tm is the temperature of the intake manifold. rha,th denotes the mass 

of air flow past the throttle plate and the air flow into the cylinders is represented 

by rha>cyt. The throttle mass air flow rate, rhatth can be modeled using the standard 

orifice flow equation for one-dimensional steady compressible flow [1] as 

rna,th = CdAth{a) 
P / P 

(3.16) 
\/RTa \ Pa 

where a is the throttle angle, Ath{ot) is the flow area of the throttle, R is the gas 

constant, Cj, is the flow discharge coefficient and Pa, Ta denote the ambient pressure 

and temperature, respectively. The functions Ath{a) and ^ (•pQ-) are given by 

' V l - c o s a ) , Ath{ot) 
*dl 

4 
(3.17) 

where dth represents the throttle diameter and 

Prr 
<a 

Pn 

i f r p > ( ^ T ) - 1 

The constant 7 = 1.4 is the ratio of specific heats for air, and rp — ^ 

(3.17) can be rewritten using the Taylor series expansion leading to 

ndth , 

(3.18) 

Equation 

Ath(a) 1 - 1 a 

2f 4! + 6f 

p0a
2 +pia4 + p2a

6, (3.19) 

for some coefficients p0 , pi and p2. The expression for the function ^ ( - ^ j can be 

expanded using the generalized binomial theorem to get 

*'t 2 7 /P, 

1-1 \Pa 

P 
* m 

S0Pm + SiPm + S2Pn (3.20) 

for some coefficients So,Si and s2. Substituting the value of 7 in (3.20) results in 

P 
l! 

Pa 
S0Pm7 + SiPm + S2Pm • (3.2i; 

42 



www.manaraa.com

Substituting the expressions (3.19) and (3.21) into (3.16) leads to a polynomial ex­

pression for the mass of air flow past the throttle plate as given by (3.22) 

rhatth « Cd-^={p0a
2 + Pla

4 + p2a
6)(s0pj + SlPm + S2PJ) (3.22) 

v Wia 

The coefficient of discharge, Cd is also a function of the throttle angle, whose effect can 

be incorporated in the p* coefficients and hence no separate polynomial dependence 

is considered. This leads to the following polynomial expression for ma^h with new 

coefficients Cj as 

5 9 

rna,th « c0a
2Pm7 + cia2Pm + C2a?Pm7 

5 9 

4-c3a
4Pm7 + c4a

4Pm + c5a
4Pm

7 

+c6a
6pj + c7a

6Pm + csa
6pj 

= »{a,Pm), (3.23) 

where //(•) gives the functional dependence of rna^h on the engine parameters throttle 

angle and manifold pressure. The cylinder air flow for a 4-stroke engine is given by [1] 

VvoiVdN 
ma,cyl = o p T , Pm, (3-24) 

where r\voi is the volumetric efficiency, Vd is the total displaced volume of all the 

cylinders and N is the engine speed. As is a common practice [38,39] the volumetric 

efficiency is expressed as a polynomial function of Pm and N as in 

Vvoi = d0 + dxN + d2N
2 + dAPm. (3.25) 

Substituting (3.25) in (3.24) gives 

ma,cyi = e0NPm + e1N
2Pm + e2N

:iPm + e3NP^ 

= S(N,Pm), (3.26) 

for some coefficients e,, with £(•) giving the dependence of ma>cy/ on the engine param­

eters speed and manifold pressure. Substituting (3.23) and (3.26) in (3.15) models 
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the intake manifold dynamics. The throttle valve opening a is manipulated using 

a simple first-order system with the bandwidth of wthr- Finally, the overall system 

dynamics is represented by 

Pm =/3m{l*(a,Pm)-£(N,Pm)), 
{o.Zlj 

a = -wthra + wthraref, 

where pm = ^P21 is a constant associated the manifold volume and temperature and 

arej is the reference throttle input. The speed that the engine runs at depends on the 

applied load. The torque and speed production dynamics can be modeled; however, 

it is not required in this study since the engine speed is a measurable quantity and 

we aim to identify only the intake manifold dynamics. 

3.4 Problem Formulation 

In order to use the results of the LPV system identification methodology presented 

in section 3.2, the system to be identified needs to be formulated in an input-output 

representation. This section details the steps necessary, to formulate the problem we 

plan to solve. Assuming the manifold pressure Pm, engine speed N, and the throttle 

angle a as the measurable scheduling parameters, an LPV representation for the 

system dynamics in (3.27) can be written as 

x(t) = A(p)x(t) + B(p)u(t), 

y{t)= C(p)x(t), 

where p is the scheduling parameter vector, u(t) is the input and y(t) is the output 

to be modeled. To demonstrate the proposed approach, the air flow past the throttle 

is chosen as the output and the reference throttle opening serves as the input. The 
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parameter-dependent state-space matrices are given as 

X — 

p 
1 m 

a 

MP) = 

C(P) = 0 

•A 

u = are/, p = 

> Z(.N,Pm) 
m p 

0 

n(a,Pm) 
a 

a ti(a,Pm) 
l->m a 

-Wthr 

Pm N a 

, B(p) = 
0 

Wthr 

(3.29) 

The continuous-time state-space representation in (3.28) is discretized using the back­

ward difference approximation with a sampling time Ts, to obtain 

x(k + 1) = (/ + TsA{p))x{k) + TsB(p)u{k), 

y(k) = C(p)x(k). 

The input-output representation of (3.30) is then obtained as 

(3.31) 

(3.30) 

y(k) - (1 - wthrTs)y(k - 1) + ( ^Pm)wthrTs ) u(k - 1). 
a 

To associate the obtained model with the input-output representation that is useful 

for the LPV parameter identification, we define a set of basis functions as 

fi(p) = aPm
7, /2(p) = aP m , h{p) = aPm, 

f4(p)= O?PJ, Mp) = o^Pmi /fl(p)= a'pj, (3.32) 

f7(p)= a5pj, fs(p) = a5Pm, f9(p)= a5pj. 

It is interesting to note that the non-linear terms in £(N, Pm) do not play a role in 

forming the basis functions, due to the output selection. With the basis functions 

defined as above, the input-output representation in (3.31) is of the form (3.1), as 

required by the LPV identification algorithm. More specifically, we have 

MQ 1.Pfc) = 1 - (1 -WthrTs 
, - 1 (3.33) 

B(q -\pk) = ( WthrT£ 
M«> Pm) 

a 
[wthrTs(c0fi(p) + C1f2(p) + c2/3 (/£>)) 

+C3h(p) + c4f5(p) + c5f6(p)) 

+cQf7{p) + c7fs{p) + C8/9(p))]g_1. 
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As can be seen from the above formulation the coefficients bj from (3.3) correspond 

to the product of wthrTs and the coefficients c, from (3.23). The a; and bj coeffi­

cients of (3.3) are to be identified using the proposed RLS based system identification 

technique. 

0 1000 2000 3000 4000 5000 6000 
Samples 

Figure 3.1: Throttle valve excitation input during GT-Power simulation study 

3.5 Simulation Results using GT-Power 

GT-Power, the industry standard tool for engine model identification and vehicle 

simulation, was used to validate numerically the proposed approach. A 4-cylinder SI 

engine model was developed in the GT-Power simulation environment and coupled 

with Matlab-Simulink. Fig. 3.1 shows the throttle angle excitation input used for 

identifying the parameter-dependent intake model. Fig. 3.2 shows the corresponding 

manifold pressure and speed variations and shown in Fig. 3.3 are the results of the 

identification method presented in this chapter. 

The proposed LPV identification algorithm was implemented on the data collected 
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Figure 3.2: Manifold pressure and engine speed trajectories during input excitation 
in GT-Power simulation 
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Figure 3.3: Estimated and sensor outputs with GT-Power simulation study 
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from simulations, with the forgetting factor value A = 1. Fig. 3.3 shows the compar­

ison of the model estimated mass air flow, with the sensor obtained value. As can be 

seen the model estimates track the sensor output values very well. 
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Figure 3.4: Throttle valve excitation input 

3.6 Experimental Results 

3.6.1 Training Data 

Experiments were performed at the UH-ECRL to validate the proposed LPV iden­

tification algorithm. A brief description of the engine setup used is already provided in 

section 2.4. Here we elaborate the types of signals used in the identification method­

ology. A random Gaussian signal with appropriate range of variation was used to 

excite the throttle angle input. All relevant data was recorded. Fig. 3.4 shows the 

throttle excitation and Fig. 3.5 shows the trajectories of the relevant engine param­

eters. Manifold pressure is measured in kPa and the engine speed is measured in 
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Figure 3.5: Manifold pressure and engine speed trajectories during input excitation 
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Figure 3.6: a\ coefficient trajectory 

revolutions per minute (rpm). The input-output data is collected from the engine at 

a 10 Hz sampling rate, corresponding to a sampling time Ts — 100 ms. The proposed 

identification method is implemented with a forgetting factor A — 1. Fig. 3.6 shows 

the convergence of the a° identified coefficient. Similar convergence was obtained for 

the other identified coefficients but is not shown here. Shown in Table 3.1 are the 

values of the identified coefficients after normalization. During the validation phase 

presented in the following sub-section we use the identified model coefficients to pre­

dict the mass air flow across the throttle and compare it the with actual value of mass 
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Table 3.1: Normalized model coefficient values 

Normalized Coefficient 

< 

V 
h2 

h3 

V 
frl5 

bl* 

V w8 

V 

Value 
0.72 
7.407 
-9.748 
3.330 
-5.372 
7.312 
-2.529 
1.015 

-1.383 
0.476 

air flow measured using a sensor. 

3.6.2 Validation Data 

As mentioned before a random Gaussian signal was used as an input excitation in 

order to identify the model coefficients. To validate the results of the identification 

algorithm, another data set was obtained, where the throttle was modulated manually 

as a driver in a car would. The engine was applied a dynamometer load similar to 

the one used during identification/training phase. Fig. 3.7 shows the throttle angle, 

manifold pressure and engine speed during the engine run for the validation case. 

It is to be noted that the throttle perturbations during this validation phase are in 

the same magnitude range as with the training data. This is obvious because the 

identified model is expected to hold good only for the data range used during the 

identification process. Also the variation in engine speed as seen from Fig. 3.7 is from 

approximately 1000 rpm to 2000 rpm, very similar to the one seen in Fig. 3.5. Similar 

is the case with the observed manifold pressure. The mass air flow across the throttle 

was estimated, based on the coefficient values obtained during identification phase 

(shown in Table 3.1) and this estimate was compared with the actual MAF sensor 
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Figure 3.7: Throttle angle, manifold pressure and engine speed trajectories during 
validation 
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obtained value. This comparison is shown in Fig. 3.8. As is evident, the estimate 

tracks the sensor output value very well. For comparison sake Fig. 3.9 shows the 

results of using only the first six basis functions from (3.32). The results deteriorate 

even further if only three basis functions are used and is not shown here. 
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Figure 3.8: Sensor output and output of the identification algorithm 

3.7 Chapter Conclusions 

This chapter illustrates the successful application of parameter-dependent model 

identification to the intake manifold of an SI engine. The LPV system identification 

problem is posed as a recursive least squares problem, by introducing a new regressor 

vector to augment the basis functions and the system data using the Kronecker prod­

uct. A non-linear model of the intake manifold is derived from the first-principles 

and cast into an LPV form. The derived continuous time LPV state-space model is 

then discretized and cast into an input-output form, to which the proposed method 

of identification can be applied. The proposed approach has been validated with 
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Figure 3.9: Sensor output and output of the identification algorithm with only 6 basis 
functions 

simulations in GT-Power and with experimental data obtained from a 5.4-L V8 Ford 

engine, housed at the UH-ECRL. 
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Chapter 4 Delay-Dependent Ti^ Control 

of LPV Time-Delay Systems with 

Application to Fueling Control in SI 

Engines 

In this chapter the delay-dependent stability and Hoc control of LPV systems with 

fast-varying time-delays is examined. This work is motivated by the inability of the 

existing output feedback control synthesis methods for LPV time-delay systems to 

provide a feasible controller for the fueling control problem in SI engines. 

4.1 Introduction and Literature Review 

Dynamic systems with time delays appear frequently in engineering and biologi­

cal systems. Time delays may be constant or time-varying, point-wise or distributed, 

deterministic or stochastic. The most obvious example of time delay in a system is 

the delay introduced by the interconnection of two subsystems that are separated by 

a significant physical distance resulting in transport or transmission delays between 

the sub-systems. Delays often describe the time to effect coupling or interconnection 

between dynamics through propagation or transport phenomena in shared environ­

ments, or through heredity and competition in population dynamics. Time delays 

complicate the controller design process as they often induce instability in the feed­

back control system [53]. The mathematical formulation of a time-delay system results 

in a system of functional differential equations (FDEs) which are infinite dimensional, 

as opposed to ordinary differential equations (ODBs) that describe finite-dimensional 
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systems. Stability analysis and control of time-delay systems is a subject of great 

practical and theoretical importance and has been studied extensively in the controls 

literature for decades. For example refer the monographs [54-60] and the numerous 

references therein. Richard in [61] provides a good overview of some recent advances 

and open problems in time-delay systems. 

Stability of time-delay systems can be broadly studied using either frequency 

domain or time domain methods. The discussion in this chapter is restricted to the use 

of time domain methods and more specifically to the employment of Lyapunov-based 

methods. Existing stabilization results for delay systems are concerned with either 

one of the following two types of stabilization: delay-independent stabilization or 

delay-dependent stabilization. Delay-independent stabilization is based on conditions 

that are independent of the size of the delay and has been studied extensively in the 

literature [62-68]. It is well known that delay-independent criteria for stabilization 

lead to conservative results specially for systems with small time delays, as stability is 

guaranteed for all non-negative values of time delays. Delay-dependent criteria ensure 

stabilization and a prescribed level of performance of the system for magnitudes of 

the delays smaller than a given bound. This knowledge of a bound on the size of 

the time-delay allows for reduced conservatism compared to the delay-independent 

approach. Development of the delay-dependent stability conditions and control has 

been investigated in [69-77] among many others. 

Linear parameter-varying (LPV) systems provide a systematic way of computing 

gain-scheduled controllers for nonlinear and/or time-varying systems when formulated 

in the LPV framework. Stability analysis and control synthesis problems for LPV sys­

tems have been investigated extensively in the literature [12,13,78-80]. The above 

results, however, do not consider systems with delay in their dynamics. LPV systems 

with time delays often appear in many engineering applications. In fact, in parameter-

varying systems often the magnitude of the delay changes as a function of varying 
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parameters in the system. For instance, the transport delay in an internal combus­

tion engine is a known function of the engine speed and mass air flow. Similarly, 

parameter-varying time delays also appear in many manufacturing processes such as 

the milling process, where the changes in system dynamics result in variable time 

delays. Stability analysis and control of such LPV time-delay systems has attracted 

a lot of attention in the last decade. One of the first work appeared in [81], where 

the authors analyzed a time-delay LPV system and developed a delay-independent 

condition, with an additional restriction of keeping the kernel of the integral term 

parameter-independent. State feedback controller synthesis conditions guaranteeing 

a desired induced £2 gain performance were also presented in [81]. The authors in [82] 

developed stability tests for LPV time-delay systems using both delay-independent 

and delay-dependent conditions. However, the delays are assumed to be constant 

(not parameter varying) and no controller synthesis conditions were provided. The 

authors in [83] provide the delay-independent and delay-dependent stability analysis 

results for quadratic stability and afflne quadratic stability and further discuss £2 

gain state feedback control using delay-independent conditions. Improvements over 

the result of [81] are presented in [84] along with new results discussing the C2 — £00 

gain control. Output feedback control synthesis has been discussed in [85,86] again 

using the delay-independent conditions. Delay-dependent Ti^ control result for LPV 

systems with state delays first appeared in [87]. However, the rate information for 

the delay variation has not been used resulting in conservative results. The authors 

in [88] examined state feedback "Hoc control of LPV time-delay systems with a rate 

bounded time-varying delay. Their approach uses a model transformation introducing 

additional dynamics in the system. This shortcoming is overcome in the work of [89], 

where an equivalent descriptor model transformation first introduced in [90], along 

with Park's inequality [91] for bounding cross terms is used to derive less conservative 

results. Additional results concerning control and filtering of LPV time-delay systems 

appear in [92-94]. 
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Despite a large number of research articles appeared in the past decade on the 

control of time-delay LPV systems, Tl^ control of LPV time-delay systems based 

on output feedback is still an open problem with more efforts directed towards re­

ducing the design conservatism. It is well known that the choice of an appropriate 

Lyapunov-Krasovskii functional is crucial for deriving stability conditions. The con­

servatism of the existing delay-dependent conditions stems from two sources: one is 

the model transformation used and the other is the inequality bounding techniques 

usually employed for some cross terms encountered in the analysis and synthesis con­

ditions. The Lyapunov-Krasovskii functional used in this work is borrowed from [95] 

and modified to allow for the dependence of the time-varying delay on the scheduling 

parameter. This type of Lyapunov-Krasovskii functionals avoids any model transfor­

mation or any bounding of the cross terms. The only conservatism introduced by this 

method comes from the initial choice of the Lyapunov-Krasovskii functional and the 

use of the Jensen's inequality [59] employed to bound an integral term in the deriva­

tive of Lyapunov-Krasovskii functional. The main advantage of these functionals is 

their simplicity and the lower number of matrix variables involved in the Lyapunov-

Krasovskii functional, thus reducing products between data matrices and decision 

variables and making them potentially interesting candidates for the stabilization 

and control design purposes. In this chapter, a bounded real lemma, which is an LMI 

analysis condition guaranteeing a prescribed level of Hoc performance is derived for 

the time-delay LPV system. Before substituting the closed-loop system state-space 

matrices and deriving synthesis conditions, the LMI conditions are relaxed using the 

approach presented in [97], which introduces slack variables. Existence conditions for 

synthesis of a state feedback controller are derived. It is shown that the proposed 

results for state feedback control synthesis have a potential to reduce conservative-

ness as compared to methods in literature. To develop existence conditions for an 

output feedback control, we substitute the output feedback controller dynamics in 

the closed-loop which results in bilinear matrix inequality (BMI) conditions. These 
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conditions corresponding to the closed-loop system are linearized using a nonlinear 

transformation leading to the final delayed-feedback output controller synthesis con­

ditions. The structure of the feedback controller is assumed to have a delay term in 

its dynamics. 

The notation used in this chapter is standard. K stands for the set of real numbers. 

Rn and Rkxm denote the set of real vectors of dimension n and the set of real k x m 

matrices, respectively. The transpose of a real matrix M is denoted as MT and its 

null-space by ker(M). Sn denotes real symmetric nxn matrices and §" + is the set of 

real symmetric positive definite nxn matrices. C{J,K) denotes the set of continuous 

functions from a set J to a set K. 

4.2 Problem Statement and Preliminaries 

Consider the following state-space representation of an LPV system with a time-

delay in the state: 

(£,) : x{t) = A(p)x(t) + Ah(p)x(t - h(p(t))) + Bx{p)w{t) + B2(p)u{t) 

z(t) = C1(p)x(t) + Clh{p)x{t - h(p(t))) + Dn(p)w{t) + D12(p)u{t) 

y{t) - C2(p)x(t) + C2h{p)x(t - h(p(t))) + D2l(p)w(t) 

x(0) = 0 (0 ) ,V0e[ -%(O)) 0], 

(4.1) 

where x(t) e Rn is the system state vector, w(t) € RHw is the vector of exogenous 

disturbance with finite energy in the space £2[0 oo), u(t) € K"u is the input vector, 

z(t) € Rn* is the vector of controlled outputs, y(t) € Kny is the vector of measurable 

outputs, </>(•) denotes the initial system condition, and h is a differentiate scalar 

function representing the parameter-varying time-delay. We assume that the delay is 

bounded and that the function h lies in the set 

H:={he C(RS,R) : 0 < h{t) < hmax < oo,Vt e R+}. (4.2) 
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The initial condition function <p is a given function in C([—hmax 0],Rn). Wherever 

needed, the notation xt(6) is used to denote x(t + 6) for 6 € [—/Wx 0], that is, 

x t is the infinite dimensional state of the system. The state space matrices A(-), 

Ah{-), B.i-), B2(-), d ( . ) , Clh{-), C2(-), C2h{-), Dn(-), D12(-), D21{-) are assumed to 

be known continuous functions of a time-varying parameter vector p(-) e Ffi, i.e., 

we consider bounded parameter trajectories with bounded rates for the parameter 

variation. Notice that, the parametric dependence of the delay on p results in a given 

delay bound hmax, since p is restricted to lie in the given parameter set V. Bounding 

the rate of variation of the parameter vector p allows the use of parameter dependent 

Lyapunov Krasovskii functionals resulting in less conservative analysis and synthesis 

conditions [12,13]. 

In this chapter, we are interested in an rH<x design as the performance specification 

for the closed-loop system. This chapter takes advantage of a number of lemmas to 

prove some of the technical results. The two important ones are described below. 

Lemma 4.1 Projection Lemma. Given a symmetric matrix *$> e R m x m and two 

matrices C, V of appropriate dimensions, the following problem 

V + CTGTV + VTQC < 0 (4.3) 

is solvable in a matrix Q of compatible dimension if and only if 

KerT(C)VKer(C) < 0, KerT{V)^Ker{V) < 0, (4.4) 

where Ker(C) and Ker(V) are any basis of the kernel or null space of C and V, 

respectively. 

Proof. Refer to [96] 

Lemma 4.2 Jensen's Lemma. Let 4> be a convex function and f(x) is a function 
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mtegrable over [a b], a < b. Then, the inequality in (4-5) holds 

f(x)dx\ <(b-a) I(j>(f(x))dx (4.5) 

\a / a 

Proof. Refer to [59]. 

The Jensen's inequality is often used in the Hoo norm analytical computation of 

integral operators in time-delay systems framework It is also used in approaches 

based on Lyapunov-Krasovskii functionals as an efficient bounding technique. An 

example of one such application is given as 

x(9)d9 ) P I / x(9)d9 I < h f x(9)TPx(9)d9, (4.6) 

t-h 

with P = P > 0. The convex function is <f>(z) — z Pz and f(t) = x(t). 

4.3 TioQ Performance Analysis of Time-delay L P V 

Systems 

Consider the unforced (i.e., u = 0) time-delay LPV system 

(EPJ : x(t) = A(p)x(t) + Ah(p)x(t - h(p(t))) + B^pMt), 
(4.7) 

z(t) = C1(p)x(t) + Clh(p)x(t - h(p(t))) + Du(p)w(t). 

The following theorem provides a sufficient condition guaranteeing asymptotic stabil­

ity along with a prescribed level of disturbance attenuation in an H^ setting. 

Theorem 4.1 The system (T,pw) is asymptotically stable for all h EH and satisfies 

the condition ||^||2 < 7||ii>||2, if there exist a continuously differentiable matrix function 

P : Rs —> § " + ; constant matrices Q, R € §" + , and a scalar 7 > 0 such that the LMI 

condition m (4.8) holds for all p € 7p , with M(p,v) = AT(p)P(p) + P(p)A(p) + 

, . 1 * dt>> > 
E± + Q - R and N(p, v) = -
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M{p,v) P(p)Ah + R P(p)B1(p) C7{p) hmaxA
T{p)R 

* N(p,u) 0 Cfh(p) hmaxA
T

h{p)R 
-k * - 7 / P>n(p) hmaxBj{p)R 
•k * * —7/ 0 
-k * * * — R 

< 0 . (4.8) 

Proof. Consider the Lyapunov-Krasovskii functional, 

V(xup) = Vifop) + V2(xi,p) + V3(a;t,p), 

V^z.p) = xT(t)P(p)x(t), 

V2{xup) 

V3(xt,p) 

xT(OQx(0^, 

t-h(P(t)) 

0 t 

x (r])hmaxRx(rj)dr]d9. 

(4.9) 

(4.10) 

(4.11) 

(4.12) 
~hmax t-\-u 

It is easy to show that V(xt, p) is positive definite. To ascertain the asymptotic sta­

bility of the system, the time derivative of V(xt, p) is computed along the trajectories 

of the system as 

Vi(x,p) = xT(t)P(p)x{t)+xT{t)P(p)x{t) + xT(t)^^-px{t), (4.13) 
dp 

V2{xup) = xT(t)Qx(t) 

8h 
l--p)xT(t-h{p{t)))Qx(t-h(p(t))), 

V3(xt,p) - hi^x1 {t)Rx{t) - J x1{9)hmaxRx{9)d9. 

t tlmax 

(4.14) 

(4.15) 

Since h(t) < hmax, then 

t t 

- I xT{9)hmaxRx{9)d9<- f xT{9)hmaxRx{9)d9. (4.16) 

t — hmax t—h(t) 
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Using Jensen's inequality in Lemma 4.2, it is possible to bound the integral term in 

Vs{xu p) as 

V3(xt,p) < h2
maxx

L {t)Rx(t) - / x1 (6)hmaxRx(e)de 

t-h{t) 

f t \ I t 

< h^x1 (t)Rx(t) -

= h2
maxx

T(t)Rx(t) 

hrr, 

hr, 
h(t) 

I x(6)d9 \ R \ f x(9)d9 
\-h(t) J \-h(t) 

\ 

[x(t) - x(t - h(p(t)))Y R W) - x{t - h{p{t)))\ • (4-17) 

Finally, bounding — %ff by — 1, we get 

Vz{xup) < h2
maxx

T(t)Rx{t) - [x(t) - x(t - h(p(t)))f R[x(t) - x(t - h(p{t)))]. 

(4.18) 

Gathering all the derivative terms and letting V(xt, p) < 0, we determine the inequal­

ity condition 

V(xuP)<C1(t)E(p,p)C(t)<0, (4.19) 

with 

-(P>/>) = 

Sn P(p)Ah(p) + R P(p)B1(p) 

—22 0 

0 

+ h2
maxT<(p)RT(p), (4.20) 

and 

C(t) = col[x{t), x{t-h(p(t))), w{t)}, 

T = \A(p) Ah(p) B^p)], 

Sn = AT(P)P(p) + P(p)A(p) + ^ ^ p + Q-R, 
dp 

—22 i - ^ ) 0 - « . 

(4.21) 

(4.22) 

(4.23) 

(4.24) 
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To establish the prescribed Hoc performance level 7 we further require [81] 

V{xu p) ~ l2wT(t)w{t) + zT(t)z(t) < 0. (4.25) 

Substituting z(t) from (4.7) into the inequality (4.25) above finally leads to the fol­

lowing inequality (r(£)fi(p, p)((t) < 0 with 

n 

Qn PAh + R + h2
maxA

TRAh + CfClh PB1 + h2
maxA

TRBl + ClDn 

E22 + hliaxA
T

hRAh + ClhClh hl^AlRB, + CfhDn 

hluaBlRB1 + Dj;iD11-^I 

(4.26) 

and Qn = ATP + PA + |~p + Q - R + h2
maxA

TRA + CjC1, and where the explicit 

dependence on the scheduling parameter vector p has been dropped for convenience 

Applying Schur complement lemma [7] to the above inequality expression leads to 

LMI (4.8). Finally noting that p enters affinely in the LMI, it suffices to check the 

LMI only at the vertices of p and hence |^p and ^f-p are replaced by ^ ± ( ^ f M 
1=1 ^ ' ' 

and ]T ± ( ^ ^ ^ ), respectively. 
i = i ^ ' 

4.3.1 LMI relaxation using slack variables 

A drawback of the standard matrix inequality characterization given by Theorem 

4.1 is that it involves multiple product terms including PA and RA and was found not 

to be suitable to derive the synthesis conditions. In this section, a reciprocal variant 

of Lemma 4.1 is used to derive a relaxed condition. This technique introduces the 

so-called slack variables which bring additional flexibility in the synthesis problem 

Moreover, this flexibility is expected to result in far less conservative conditions than 

with customary approaches. The following lemma will be useful in this respect. 

Lemma 4.3 The system (Epw) is asymptotically stable for allh €.71 and satisfies the 

condition ||2||2 < 7||w||2, if there exist a continuously differentiable matrix function 
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P : W —> §++, constant matrices Q,R € §" + ; matrix functions Vj, V2, V% : W —>• 

R n x n ana! a scalar 7 > 0 suc/i £/ia£ £/ie LM/ condition in (4-&V holds true for all 

p € J p im£/i ^22 = ^f-p + Q — R and E22 as defined earlier. 

-Vi - Vf P- V? + VXA -V^ + V.A, 

* ^22 + ATV? + V2A R + ATV? + V2Ah 

* * S22 + AlVf + V3Ah 

ViBt 

V2BX 

VZBX 

- 7 / 

•k 

•k 

0 

cl 

cT
lh 

Dli 

- 7 / 

• 

Vi + hmaxR 

V2- P 

v. 
0 

0 

( — 1 — 2hmax)R 

< 0 . (4.27) 

Proof. The proof is inspired from [97]. We first rewrite (4.27) as 

<S> + C101V + V1QC < 0 , (4.28) 

with 

tf 

0 

• 

• 

* 

* 

• 

P(P) 

^ 2 2 

• 

* 

* 

• 

0 

R 

^ 2 2 

* 

* 

• 

0 

0 

0 

- 7 / 

• 

* 

0 

^ l T (p ) 

CUP) 

Dj.ip) 

- 7 / 

• 

"max **• 

-P(P) 

0 

0 

0 

( — 1 — 2hmax)R 

(4.29) 

64 



www.manaraa.com

C{P) = 

V = 

QT = 

-I A(p) Ah(p) 

7 0 0 0 0 0 

0 7 0 0 0 0 

0 0 7 0 0 0 

Bi{p) 0 7 

T V2
T V? 

(4.30) 

(4.31) 

(4.32) 

The explicit bases of the null-space of C and V are given by 

A(p) Ah(p) Bx(p) 0 7 

I 0 0 0 0 

0 7 0 0 0 

0 0 7 0 0 

0 0 0 7 0 

0 0 0 0 7 

Ker(C(p)) Ker{V) 

0 0 0 

0 0 0 

0 0 0 

7 0 0 

0 7 0 

0 0 7 

. (4.33) 

Applying Lemma 4.1 with respect to the variable G in (4.28) yields two inequalities, 

one of which is exactly the characterization given by (4.8) and the other is the LMI 

given by (4.34) as 

" - 7 / 

•k 

* 

DUP) 

- 7 / 

* ( - 1 -

0 

0 

Zilmax)ii. 

< 0 . (4.34) 

The above inequality is a relaxed form of the right bottom 3 x 3 block of the inequality 

(4.8) and is always satisfied. Hence, the feasibility of (4.27) implies the feasibility 

of (4.8), which along with the result of Theorem 4.1 concludes the proof. Having 

developed a relaxation for the bounded real lemma analysis condition we now discuss 

the control synthesis conditions in the subsequent sections. 
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4.4 l-Loo S ta te Feedback Control of Time-Delay LP V 

systems 

In this section, the analysis results developed in the previous section are used for 

the synthesis of a state feedback parameter-varying H^ controller for LPV systems 

with time delays. For the system (4.1), we seek to design a parameter-dependent 

state feedback controller of the form 

u(t) = K(p(t))x(t), (4.35) 

such that the closed loop system is asymptotically stable and has induced C2 norm 

less than 7. Using the state feedback control law (4.35) results in a closed-loop system 

given by 

x(t) = Aclx(t) + Ahx(t-h) + B1w(t), 

z{t) = Chdx{t) + Clhx(t -h) + Dnw(t), 

where Ad = A •+ B2K and C1)C/ = C\ + D\2K. The following theorem provides a 

sufficiency condition for the existence of such a control law. 

Theorem 4.2 Given the LPV system (4-1), there exists a state feedback controller of 

the form (4-35) such that the closed-loop system is asymptotically stable and satisfies 

the condition \\z\\2 < 7IIHI2 for aM h E H, if there exist a continuously differentiable 

matrix function P : Rs —> §"+ , constant matrices Q,R and U € §++, two given 

scalars X2 and A3 € M, a matrix function Y : Rs —> RnuXn and a scalar 7 > 0 such 

that the LMI condition given by (4-38) holds, with (2,3) = R + X2AhU + A3(£MT + 

YTBj), E = X2(AU + UAT + B2Y + YTBj), and $>22, E22 as defined below holds true 

for all p e J7?. Moreover, the state feedback control law providing a guaranteed H^ 

norm performance level 7 is given by 

u{t) = Y{p)U-1x{t). (4.37) 
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-2U P-X2U + AU + B2Y 

* *22 + E 

•k * 

-X3U + AhU 

(2,3) 

I22 +X3(AhU + UAT
h) 

•k 

Bi 

2 # 1 

3-B1 

- 7 / 

• 

0 

UCf + YT 

ucrh 

Dl 

- 7 / 

DI2 

U + hmax R 

X2U- P 

X3U 

0 

0 

• 1 - 2 / u , /2 

< 0 . (4.38) 

Proof. The proof is an application of Lemma 4.3 to the closed-loop system (4.36). 

To derive the synthesis conditions we choose the three distinct slack variable matrices 

of the analysis condition in (4.27) as V\ = V e §++, V2 = X2V and V3 = X3V where 

A2 and A3 are any given real scalars. Defining new variables U — V^1 and Y = KU, 

and applying the congruence transformation using matrix diag(U, U, U, I, I, U) to LMI 

(4.27) we obtain the result of Theorem 4.2 with P = UTPU, Q = UTQU, R = UTRU, 

*22 = UT$>22U and S22 = UTE22U. 

4.5 Hoo O u t p u t Feedback Control Design 

In this section, the state feedback controller synthesis results presented in the 

previous section are extended to design a dynamic output feedback controller. The 

time delay in the system dynamics is assumed to be an exactly known or measurable 

function of the scheduling parameter p. For the system (4.1), we seek to design a 
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(4.39) 

controller of the form 

xk(t) = Ak(p)xk(t) + Ahk{p)xk{t - h(p(t))) + Bk{p)y{t), 

u(t) = Ck{p)xk(t) + Chk(p)xk(t - h(p(t))) + Dk{p)y{t), 

where xk(t) G Rn is the controller state vector and xk(t — h(p(t))) G Kn denotes the 

delayed state of the controller. The closed loop system formed by the interconnection 

of (4.1) and (4.39) is 

xci{t) 
A + B2DkC2 B2Ck 

BkC2 Ak 

Xd(t) + 
Bx + B2DkD2l 

BkD2l 

w(t) 

Bci 

+ 
Ah + B2DkC2h B2Chk 

BkC2h Ahk 

XcU 

<t) 

+ 

Ahci 

d + Dl2DkC2 

Ccl 

C\h + Di2DkC2h 

D12Ck _ Xd(t) + Dn + D12DkD21 

Dd 

D\2Chk 
• 

w(t) 

(4.40) 

ch 

with Xd(t) = col[x(t),Xk(t)] and xcih = xci(t — h(p(t))), where again the dependence 

on the scheduling parameter has been dropped in order to improve clarity. The follow­

ing result gives sufficiency conditions for the synthesis of a delayed output feedback 

controller, such that the closed loop system (4.40) is asymptotically stable and has 

an induced C2 norm less than 7. 

Theorem 4.3 If there exists a continuously differentiable matrix function P : Rs —> 

S+'Y, parameter dependent matrix functions X, Y : Rs —> S" + , constant matrices 

Q, R G §+")_, parameter dependent matrices A, A^, B, C, Ch and Dk, two given scalars 
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A2, A3 € K and a scalar 7 > 0 such that the LMI 

-2V P-X2V + A -X3V + Ah 

*22 + A2 (A + AT) R + X3A
T + A2 Ah 

* %2 + X3(Ah + Al) 

B 

X2B 

X3B 

- 7 / 

* 

-k 

~k 

* 

0 

CT 

CT 

VT 

- 7 / 

* 

•k 

•k 

(" 

V + hmax R 

X2V-P 

x3v 
0 

0 

— 1 ZtlmaxjiC 

holds for all p e .F-p t«z£/i 

K = 

4 = 

A = 

B = 

C = 

£> = 

<o, 

Y I 

I X 

AY + B2C A + B2DkC2 

A XA + BC2 

AhY\B2C~h Ah + B2DkC2h 

Th XAh + BC2h 

Bx + B2DkD2l 

XBX + BD2l 

dY + Dud Cx + Dl2DkC2 

ClhY + Dl2Ch Clh + Dl2DkC2h 

Dn + Dl2DkD21
 1 

(4-41) 

(4.42) 

(4.43) 

(4.44) 

(4.45) 

(4.46) 

(4.47) 

(4.48) 
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$ 22 

—22 

Q-R + ±<^) i=i 

!0Pt 
Q - # , 

(4.49) 

(4.50) 

then there exists a controller of the form (4 39) such that: 

1. The closed-loop system (4-40) with h € Ti is asymptotically stable for any p € 

2. The Tico norm (induced C2 norm) of the closed loop system is bounded by the 

positive scalar 7. 

Moreover, once the parameter dependent matrices satisfying the LMI condition (4 41) 

are determined the delayed output feedback control matrices can be computed using the 

following steps: 

1. Obtain M and N from the factorization problem 

I -XY = NMT. (4.51) 

2 Once the decision matrices are determined from the LMI optimization problem, 

compute the controller matrices as follows: 

Chk = (dh - DkC2hY)M~T, 

Ck = (d-DkC2Y)M-T, 

Bk = N-\B-XB2Dk), 

Ahk = -N'\XAhY + XB2DkC2hY + NBkC2hY+ 

XB2ChkM
T - Ah)M-T, 

Ak = -N~\XAY + XB2DkC2Y + NBkC2Y + XB2CkM
T - A)M~T. 

(4.52) 

It is to be noted that the matrices M and N are always square and mvertible in the 

case of full-order controllers. 
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(4.53) 

Proof. The proof is an application of Lemma 4.3 to the closed-loop system in (4.40). 

To derive the synthesis conditions we choose the three distinct slack variable matrices 

of the analysis condition in (4.27) as Vi = V e §" + , V2 = X2V and V3 = X2V where 

A2 and A3 are given real scalars. Further we define a partitioned form for the slack 

variable matrix V as 

X N 
V = 

NT * 

Define the inverse of V as 

Y M 

MT * 

such that XY + NMT = /, where X and Y are symmetric matrices of dimension 

n x n. Substituting the closed-loop system matrices in LMI (4.27) and performing a 

congruence transformation T = diag(ZT, ZT, ZT, I, I, ZT) where 

Y I 

MT 0 

v~l = (4.54) 

(4.55) 

which leads to the inequality 

-2ZTVZ P-X2Z
TVZ + ZTVAclZ -X3Z

TVZ + ZTVAhclZ 

* ^22 + X2Z
T(A^V + VAd)Z R + XzZTAT

dVZ + X2Z
TVAhdZ 

* * E + X3Z
T(AlclV + VAhcl)Z 

ZTVBd 

X2Z
TVBd 

X,ZTVBcl 

- 7 / 

* 

* 

0 

zTcT
d 

zTcld 

DT
d 

- 7 / 

• 

ZTVZ + hmaxR 

X2Z
TVZ - P 

XSZ
TVZ 

0 

0 

(—1 — 2hmax)R 

< 0 (4.56) 
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where we have P = ZTPZ, R = ZTRZ, *22 = ZT^22Z and --22 ZTEZ. Note that 

ZlVZ = 
Y I 

I X 
and ZTV = 

I 0 

X N 
(4.57) 

With this, the following identities can be obtained: 

ZTVAclZ = A, 

ZTVAhclZ = A , 

7 r r r _ CT 

ZT1/BC/ = 5, 

^ = cr, 

£>d = £>• 

(4.58) 

The nonlinear transformations employed to linearize the inequality are 

A = XAY + XB2DkC2Y + NBkC2Y + XB2CkM
T + NAkM

T, 

Ah = XAhY + XB2DkC2hY + NBkC2hY + XB2ChkM
T + NAhkM

T, 

B = XB2Dk + NBk, (4.59) 

C = DkC2Y + CkM
T, 

dh = DkC2hY + ChkM
T. 

Thus the inequality has been linearized with respect to the new variables (.4, A^, B, 

C, Ch and Dk) and it represents the LMI condition presented in Theorem 4.3. It is 

to be noted that the output feedback controller designed using the result of Theorem 

4.3 includes a delay in its dynamics. 

Remark 4.1 It should be observed that the inequality (4-41) iS n°t «re LMI unless 

the scalars \2 and A3 are fixed It is observed through simulations that the results 

obtained are very sensitive to the chosen scalar values. To achieve improved results 

one should perform a 2-dimensional search over the scalars and use those in the LMI 

optimization for 7. 

Remark 4.2 Previous work in literature on H^ control design for LPV time-delay 

systems in case of a time-varying delay required the rate of variation of the time 
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delay to be less than one, i.e., \h\ < 1. With the results presented in this chapter, 

this restriction does not exist and the proposed LMI formulation can even handle 

unbounded delay rates. 

4.6 Numerica l Examples 

It was mentioned in section 4.3.1 that the introduction of slack variables is ex­

pected to result in reduced conservativeness in the design methodology. In this section 

we present two numerical examples to assess the performance of the new controller 

synthesis conditions presented in this chapter. 

Example 1. Consider the following linear time-varying state-delayed system 

adopted from [88] 

x(t) = 

+ 

0 1 + 0.2sin(t) 

- 2 - 3 + 0.1sin(t) 

0.2 

x(t) + 

it) 

0.2 

0 10 

0 0 

w{t) + 

x(t) 

0.2sin(£) 

0 1 + 0.1sin(i) 

0 

0.2sin(£) 0.1 

-0.2 + 0.1sin(t) -0 .3 

u{t), 

x(t-h{t)) 

0.1 
u(t). 

(4.60) 

(4.61) 

Defining p(t) = sin(t) leads to an LPV system with the parameter space pit) E [—1 1]. 

The control objective is to minimize the effect of disturbance w(t) on the state x2(t) 

and maintain a reasonable control effort. The matrix D\2 is used to penalize the 

control effort. To apply the synthesis results presented in Theorem 4.2 the parameter 

space is gridded uniformly using 20 points. To allow a fair comparison we choose the 

same parameter dependence for the controller as chosen in the control design methods 

in [88,89] as 

Y(p) = Y0 + pY1 + ^Y2. (4.62) 
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Figure 4.1: 7 varying with A2 and A3 

The induced C2 performance levels with respect to different maximum time delays 

hmax and different delay variation rates JJ, are computed using the results of Theorem 

4.2. As mentioned in Remark 4.1, we perform a search over the two scalar variables 

A2 and A3. Fig. 4.1 shows a zoomed-in plot of the obtained 7 variation with changing 

A2 and A3. The two scalars A2 and A3 are chosen to be 1 and 7, respectively, leading 

to the minimum value of 7. Tables 4.1 and 4.2 present a comparison of the Hoc norms 

obtained, whereas Table 4.3 compares the allowable maximum time-delay values using 

the results of this chapter with those in [89] and [98]. It can be observed from the 

tables 4.1 and 4.2 that Ti^ performance index deteriorates with increasing time delay 

hmax and increasing delay variation rate \x as expected. It is also evident that the 

controller design method proposed in this chapter outperforms the previous results 

in terms of the achievable H^ costs for same values of hmax and /i. In addition, it is 

observed that the proposed controller design methodology works for delay variation 

rates JJL ^ 1, whereas the past results fail. Furthermore, when hmax — 1.7 and \i = 0.5, 

the state feedback controller synthesis problem is solvable using the method of this 

chapter, while the synthesis condition in [88] becomes infeasible. Table 4.3 shows that 
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Table 4.1: The resulting Tioo norms for hmax = 1 (Numbers as reported in the corre­
sponding papers) 

Method 
[88] 
[89] 

Theorem 4.2, of this chapter 

n = o 
6.489 
2.129 
1.803 

/x = 0.5 
6.499 
2.239 
1.82 

/ / = 0.7 
6.515 
2.531 
1.827 

A*= 1 
Infeasible 
Infeasible 

1.834 

the maximum time-delay allowing the controller synthesis as obtained in this chapter 

is much larger than the results in both [89] and [98]. This indicates that the method 

in this chapter would be less conservative and allow for a larger delay range. 

Table 4.2: The resulting T ^ norms for hmax = 1.5 (Numbers as reported in the 
corresponding papers) 

Method 

[88] 
[89] 

Theorem 4.2, of this chapter 

/i = 0 

27.531 
2.172 
1.864 

/i = 0.5 

28.079 
2.573 
1.889 

fi = 0.7 

28.83 
3.367 
1.91 

A*= 1 
Infeasible 
Infeasible 

1.958 

Table 4.3: The maximum allowable time-delay 

Method 

[89] 
[98] 

Theorem 4.2, of this chapter 

/i = 0 

9.1 
3.2 

48.4 

A* = 0.5 

3.1 
1.8 

45.2 

At = 0.7 
2.0 
1.1 

42.3 

Example 2. This example is motivated by the control of chattering during the 

milling process [82]. In a typical milling process, the work-piece is clamped and fed 

to a rotating multi-tooth cutter. The geometry of the cutting process of a milling 

machine is as shown in Fig. 4.2. The cutter has two blades that are used to remove 

material from the workpiece. The force acting on the tool is a function of not only 

the current displacement of the tool, but also the surface characteristics, and hence 

the displacement at the previous tool pass. This induces a delay into the system. 
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The force depends also on the angular position of the blade, which plays the role of a 

time-varying parameter. The equations of motion for the system are derived as given 

below, where we have 

m\X\ + k\(x\ — x2) = A;sin(0 + P)l{t) — w, (4.63) 

m2x2 + cx2 + h(x2 — x\) + k2x2 — u, (4.64) 

and l(t) — sm(4>)[xi(t — h(t)) — xi(t)], k\ and k2 are the stiffness of the two springs, c 

is the damping coefficient, mi and m2 are the masses of the blade and the tool, and 

x\ and x2 are the displacements of the blade and the tool, respectively. The angle 

P depends on the particular material and the tool used. The angle 0 denotes the 

angular position of the blade, k denotes the cutting force coefficient and w denotes 

the disturbance. The time delay which is the time interval between two successive 

cuts is denoted by h(t) and is approximated to be ^ where UJ is the rotation speed of 

the blade. The plant we are considering can be rewritten as 

x\ = —\—kiXi + k\x2 — k sin(0 + P) sm(<b)xi (4.65) 
mi 

+ ksin((j) + P) sin(0)xi(t - h{t)) - w], (4.66) 

x2 — — \k1X1 — k\X2 — k2x2 — cx2 + u]. (4.67) 
m2 

We consider the following problem data: m\ — 1, m2 = 2, k\ = 10, k2 — 20, k = 2, 

c = 0.5, P = 70°. It is noted that 

sin(0 + P) sin(0) - 0.5 [cos(/3) - cos(20 + P)} 

= 0.1710-0.5cos(20 + /5). (4.68) 

The system equations can be put in an LPV form with the scheduling parameter 

vector p(t) — [pi{t) p2(t)]
T, where p\(t) — cos(20 + P) and p2(t) — 00 are measurable 

in real-time and can be used to develop a gain-scheduled controller. The rotation 

speed of the blade is assumed to be between 200 rpm and 2000 rpm, and the maximum 

variation rate is 1000 rpm/sec. Hence, we have p\(t) € [—1 1] and | ^ - | = | — 2sin(2(f)+ 
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Figure 4.2: Milling process 

0)u>\ < 2 x 2000 x 2?r/60 = 418.9 (rad /sec), p2{t) € [200 x 2TT/60 2000 x 2TT/60] = 

[20.94 209.4](rad/sec) and | ^ | = 1000 x 2TT/60 - 52.35(rad/sec2). The delay rate 

1 ^ 1 = 1 ^ x f I < p o o x W >< 1 0 0 ° >< 2TT/60 = 0.75 < 1. We seek to design 

an LPV controller to attenuate the effect of the disturbance force w. The controlled 

variable vector z is composed of the displacements of the two masses and the control 

force. Considering the state vector as x — [x\ x% X\ i ^F , the state-space matrices 

corresponding to the time-delay LPV plant to be controlled are as given by (4.69). 

Note that the penalty on control effort is 0.1. We use the synthesis results presented 

in this chapter and compare with the results obtained using the method in [88]. For 

simplicity both the Lyapunov matrix P and the slack variable matrix U are assumed 

to be constant matrices. We grid the parameter space using 5 grid points. It is worth 

noting that the synthesis conditions do not depend of the parameter p2 explicitly as 

it appears only in the delay and nowhere in the state-space matrices. Solving the 

LMI problem in Theorem 4.3 we obtain an "Hoc performance bound 7 = 1.031 and 

77 



www.manaraa.com

using the result in [88] we have 7 = 1.057. The data matrices used are 

A 

Ah 

0 0 1 

0 0 0 

-10.34 + p i 10 0 

5 -15 0 

0 0 0 0 

0 0 0 0 

0 .34-p i 0 0 0 

0 0 0 0 

0 

1 

0 

-.25 

Bo 

£1 = 

0 

0 

0 

0.5 

0 

0 

- 1 

0 

(4.69) 

Ci = 

1 0 0 0 

0 1 0 0 

0 0 0 0 

Dn 

0 

0 

0.1 

Simulations performed validate the disturbance attenuation performance of the de­

signed controller. The disturbance w(t) used in the simulation is a rectangular signal 

of unity magnitude for 0 < t < 4 and zero elsewhere. The blade rotating speed u> is 

as shown in Fig. 4.3. Under the proposed control scheme, the control signal is shown 

in Fig. 4.6 and the displacements of the two masses are shown in Figs. 4.4 and 4.5. 

As is evident from the figures the disturbance attenuation performance using the two 

compared methods is similar. However, the control effort required using the method 

of [88] exhibits significant chatter, whereas the results of the present chapter yield a 

much smoother control effort. 

4.7 Application to Fueling Control of SI Engines 

To demonstrate the application of the output feedback controller synthesis con­

ditions presented in this chapter, we consider the problem of controlling the air-fuel 
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Figure 4.3: Blade rotation speed (rpm) 

0.05 

10 
Time (sec) 

Figure 4.4: Displacement of mass 1 using results in Zhang et al. 2005 (solid line), 
and our results (dashed line) 

ratio (AFR) in an SI engine. Precise control of AFR in SI engines is necessary to 

minimize emissions. Stringent norms on the emission levels of exhaust gases from 
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Figure 4.5: Displacement of mass 2 using results in Zhang et al. 2005 (solid line), 
and our results (dashed line) 

10 
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Figure 4.6: Control effort for the milling process example using results in Zhang et 
al. 2005 (solid line), and our results (dashed line) 
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automotive engines demand development of robust fueling strategies which take into 

account the engine, as well as, the catalyst dynamics. The three way catalyst (TWC) 

converter is a standard component of todays automobiles. The TWC reduces exhaust 

emissions by oxidizing the unburnt hydrocarbons (HC) and carbon monoxide (CO) 

and by reducing nitrogen oxides (NOx). The TWC performance is only as good as 

the quality of the exhaust gas mixture supplied to it, leading to best results only in a 

narrow region around stoichiometry. Short excursions about the stoichiometric point 

are allowed due to the oxygen storage behavior of the catalysts. When the engine is 

operating lean, the excess oxygen in the pre-catalyst exhaust gas is stored onto the 

catalyst surface through chemisorption, preventing lean (NOx) tailpipe emissions. 

When operating rich, the previously stored oxygen is released from the catalyst, re­

sulting in oxidation of the reducing species HC and CO, and hence lowering their 

content at the tailpipe. Cycling the pre-catalyst air-fuel ratio across stoichiometry at 

a frequency determined during engine calibration or based on a feedback sensor signal 

downstream of the TWC, has been a common practice. Key to the correct operation 

of a TWC is the oxygen storage and release mechanism and the ability of the control 

strategy to maintain the oxygen level at the midpoint of the catalysts current storage 

capacity. Sophisticated control strategies try to maintain the catalyst oxygen level. 

This has been the driving motivation behind the development of tight AFR control. 

The plant to be controlled is the fuel path of an SI engine from the point 'a' to the 

point 'b' as shown in Fig. 4.7. The input of interest is the fuel injector pulse-width. 

The normalized AFR Xup, as measured by UEGO sensor upstream of the TWC and 

the mass of oxygen stored in the TWC, i.e mo2, form the vector of controlled variables. 

The overall dynamics from the fuel injector to the UEGO sensor can be modeled as 

a series combination of a first order lag and a delay element as given by [99] 

where AXup = Xup — 1, F\ is the fuel injector pulse-width multiplier, AFA = F\ — 1 is 

81 



www.manaraa.com

/CD\ 

r—^j 

Figure 4.7: Fuel path of an SI engine 

the incremental fuel injector pulse-width and the subscript "up" refers to upstream of 

the TWC. The time constant r and the time delay T depend on the operating speed 

of the engine cu and this defines an LPV system with a parameter varying time-delay 

The dependence of these parameters on the engine speed to and the mass air flow is 

as given below. 

Texh : depends on the mass air flow and the engine speed to, and typically varies 

between 20 and 500ms. 

Tburn : depends on the engine speed and approximates to ^ . 

r depends on the engine speed us and approximates to ^YL [99], where CYL 

denotes the number of cylinders in the engine. The total time delay can be summed 

up as T — Ti,urn + Texh. Assuming a six cylinder engine and the relations above with 

the assumption of Texh « Tburn, the parameters can be approximated as 

T = 100/w, T = 180/w. (4.71) 

Using (4.71) in (4.70) we get the following LPV state space representation of the 

plant 

w , , u ( 180 
x(t) -

yp(t) = x(t) + d0(t) (4.72) 

where u is the input corresponding to the fuel pulse-width multiplier, y is the output 

air-fuel ratio upstream of the TWC and d0 is a disturbance acting on the output. 
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Figure 4.8: Interconnection of the engine model and the controller 

The control objective is to minimize the impact of disturbance inputs on the oxygen 

storage level in the TWC by measuring the upstream lambda signal, and track any 

commanded changes in the lambda setpoint. The oxygen storage behavior of the 

TWC is modeled as [19] 

Am02 = -{mo2tUp)A\ upi (4.73) 

where mo2,up represents the mass of oxygen flow upstream of the TWC, which is 

assumed to be unity for design purposes. 

4.7.1 LPV time-delayed Controller Design 

Fig. 4.8 shows the interconnection of the engine model and the controller. The 

simplified engine model developed in the previous section needs to be refined to suit 

the LPV time-delay systems controller design framework. For this purpose, the delay 

appearing in the input needs to be converted to a delay in state allowing us to use the 

results of the theorems stated in this chapter. To address this problem we introduce 

an artificial dynamic feedback control law ua(t) G Rnu as u(s) — (si + A)~lttua(s) 

where fl is a non-singular gain matrix and A > 0 is a parameter matrix that can 

be selected based on the bandwidth of the actuators. We choose A = D, — 50 for 

our work. By defining the new state vector xT
a = [xTuT], we obtain the following 
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state-delayed LPV system 

xa(t) 

Va{t) 

100 u 

0 - A 

1 0 

xa(t) + 

xa{t) + d0(t). 

0 — 
u 100 

0 0 

180. 
xa{t J + 

0 

n 
Ua(t), 

(4.74) 

The problem of AFR control is to achieve the reference tracking and attenuate the 

effect of disturbances. To achieve this, we augment the state-space representation of 

the plant in (4.74) with two additional states £3 and x4, where £3 — r — ya, with r 

being the reference signal to be tracked and x4 = £3. The state x4 is necessary as we 

are interested in minimizing the effect of disturbances on the storage level of oxygen 

in the TWC. This leads to the final LPV time-delay system representation of the form 

(4.1) where the scheduling parameter p(t) is the engine speed uj(t) and the parameter 

varying time-delay is given by h(p(t)) = I80/co(t). The state space matrices are 

A(p) 

100 u 0 

0 - A 0 

- 1 0 -ex 

0 0 

0 

0 

0 

1 -e2 

MP) 

Bi(p) 

CM 

0 

0 

1 

0 

0 

0 

- 1 

0 

Ci{p) 

0 0 0 0 

0 0 0 ip 

0 0 0 0 

0 4 0 ° 
0 0 0 0 

0 0 0 0 

0 0 0 0 

Dnip) = 

, 52(p) 

0 

Q 

0 

0 

0 

0 (4.75) 

- 1 0 0 0 , D2i(p) 1 - 1 

Dnip) is a zero matrix and the scalars £1 and e2 exist for numerical solvability 

reasons. As observed from the matrices above, the vector of controlled outputs is z 

= [4>x3 1PX4 £u}T. This penalizes the tracking error (as given by the state x3), the 

integral of the tracking error (given by state x4), as well as the control effort. It 

is necessary to have this choice of variables as our controlled outputs. The penalty 
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on the state x4 is necessary as one of our design objectives is to minimize the effect 

of disturbances on the storage level of oxygen in the TWC. If we do not penalize 

the state x4, tracking would still be achieved; however, it would take a long time to 

bring the level of oxygen stored in the TWC back to its desired midpoint value. The 

scalars 0, tp, and £ decide the relative weighting in the optimization scheme. The 

vector of exogenous disturbance is w — [r d0]
T. The design objective is to guarantee 

the closed loop stability and Hoc performance over the entire operating range of the 

engine. The engine speed variation is assumed to be from idle « 800 rpm to high 

speeds « 4000 rpm. The controller design follows in a straightforward way using 

the result of Theorem 4.3. As pointed out in Remark 1.3, Theorem 4.3 leads to an 

infinite dimensional convex optimization problem with an infinite number of LMIs and 

infinite number of decision variables. To convert this problem to a finite dimensional 

convex optimization problem, we follow the approach proposed in [13] and choose the 

functional dependence as 

M(w) = Mo + wMh (4.76) 

where M represents any of the parameter dependent matrices appearing in (4.41). 

This choice of the basis functions mimics the dependence of the plant state-space 

matrices on the gain scheduling parameter p(t). As mentioned above we assume 

uj(t) € [800 4000], which defines the value of maximum time-delay h(p(t)) to be used 

in the synthesis of the controller. The maximum rate of variation of the parameter is 

assumed to be 100 rpm/sec. As described in Remark 4.1, a search is performed over 

the scalars A2 and A3 and we choose A2 = 10 and A3 = —0.05. Finally, gridding the 

parameter space (range of engine speed variation) over the intervals of 500 rpm leads 

to a finite set of LMIs to be solved for the unknown matrices and 7. The LMI solver 

in MATLAB gives a performance level of 7 = 2.001. 
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Figure 4.9: Xup variation in response to disturbance with engine operating speed 1000 
rpm 

4.7.2 Simulation Results 

Simulations were performed to validate the closed-loop performance in terms of 

reference tracking and disturbance rejection. A 10% step disturbance, corresponding 

to an absolute value of Xup = 0.1 was applied at the system output at time t = 2 

sec. To validate the controller performance over the entire operating range of engine 

we analyze the disturbance rejection at a low speed corresponding to larger time-

delay and at a high speed, where the time-delay is comparatively smaller. Figs. 4.9 -

4.12 show the disturbance rejection performance of the designed gain scheduled LPV 

time-delayed controller for different engine speeds of 1000 rpm and 3500 rpm. As is 

evident from the figures the disturbance has been rejected and the deviation in the 

level of oxygen stored in the TWC is brought back to zero within approximately 12 

seconds for both the cases of differing engine speeds. 

Fig. 4.15 illustrates the closed-loop tracking performance of the system. The 

engine speed was varied as shown in Fig. 4.13. In this particular speed profile we 

capture the effects of running at low speed, acceleration followed by cruise and a 
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braking. The A setpoint alternates between values Xsp — 1.1 and 0.9. Pulsating input 

disturbance as shown in Fig. 4.14 is applied to the system to evaluate the overall 

tracking behavior in the presence of external disturbances. Fig. 4.16 shows tracking 
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Figure 4.12: Amo2 variation in response to disturbance with engine operating speed 
3500 rpm 
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Figure 4.13: Engine speed variation 

performance when zoomed-in on time from 90 sec to 165 sec. As can be seen the 

closed loop system tracks both a positive as well as negative step in reference input 

in < 10 sec. Thus the simulation validates the novel results proposed in this chapter. 
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4.8 Chapter Conclusions 

In this chapter, we presented a procedure to design an output feedback controller 

for LPV systems with parameter-varying time delays. The presented results of this 
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chapter are the first in the literature to provide a solution to the output feedback syn­

thesis problem based on delay-dependent analysis conditions. The developed delay-

dependent induced C2 gain performance analysis conditions are expressed in terms 

of LMIs that can be solved efficiently using the commercial solvers. The obtained 

matrix inequality-based optimization problem is then relaxed by the introduction of 

additional slack variables that allow the synthesis conditions to be formulated as a 

convex optimization problem in an LMI form. The proposed systematic procedure for 

the gain-scheduled output feedback control design leads to less conservative results 

due to the use of parameter-dependent Lyapunov-Krasovskii functional, inclusion of 

the delay term in the feedback control dynamics and final delay-dependent synthesis 

conditions. The developed delay-dependent conditions for existence of a state feed­

back controller guaranteeing a prescribed level of %oo performance are compared with 

results existing in literature using two numerical examples. The output feedback de­

sign methodology is validated using simulations to control the air-fuel mixture ratio 

in an SI engine. 
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Chapter 5 Conclusions, Contributions 

and Future Work 

5.1 Summary and Assessment of the Dissertation 

The main objective of this dissertation was to develop and implement novel model 

estimation and control strategies for use in SI engines. We can broadly categorize the 

work in two parts. Chapter 2 constitutes the first part of this dissertation. In this 

part we address the problem of ethanol-blend estimation in flex fuel vehicles. The 

second part of the dissertation includes chapter 3 and chapter 4 where we investigate 

the use of linear parameter varying systems theory and apply it to identify engine 

dyanamics and propose control methods. This work has provided a motivation for 

use of LPV techniques for 

In chapter 2 we investigated the problem of estimating the percentage of ethanol 

by volume for a given ethanol-gasoline blend in a flex fuel vehicle. The use of ethanol 

as an alternative fuel to gasoline has spurred a lot of research concerning the use and 

effects of ethanol fuel on SI engines. A blend of 10% ethanol and 90% gasoline by 

volume is commonly available at all the gas stations in the United States. Ethanol and 

gasoline have differing physical and chemical properties and ethanol provides some 

benefits over gasoline. For example the higher octane rating of ethanol can provide for 

improvements in engine performance if the engine spark timing is optimized. These 

benefits can be reaped only if we accurately know the ethanol content in the fuel 

blend. Furthermore, not knowing the ethanol content correctly may result in increased 

emissions due to incorrect fueling and also lead to starting problems in cold conditions. 

In chapter 2 we proposed a model-based method for ethanol blend estimation. From 

first-principles, we developed a steady-state model with engine speed, throttle position 
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and UEGO sensor measured air-fuel ratio as inputs and the fuel injector's pulse-width 

as an output. This model was validated with experiments performed at the UH-

ECRL. Next, we presented a method to use the change in model parameters with 

changing ethanol-content to predict the ethanol-blend percentage. We have shown 

that the 2-norm of the vector formed by the three model coefficients is a good metric 

to infer the ethanol content. The proposed ethanol estimation methodology is tested 

using seven different ethanol-gasoline blends. Finally, we provided a validation of the 

proposed approach based on the physics of the process and combustion chemistry. 

In chapter 3 we examined the problem of identifying parameters of an LPV system. 

We presented a procedure to convert the problem of LPV system identification to a 

simpler problem of linear regression. We started with a discrete time input-output 

representation of an LPV system. We have introduced a new regressor vector to 

augment the basis functions and the system data using the Kronecker product. The 

proposed methodology can be used to identify single-input single-output as well as 

multiple-input multiple-output systems. The results presented were applied to iden­

tify the intake manifold dynamics of an SI engine. A quasi-LPV model was initially 

extracted from the non-linear system dynamics. For the input-output representation 

we chose the mass air flow as an output and the engine speed, manifold pressure and 

throttle angle as the inputs. We presented simulation study using GT-Power and also 

validated the methodology using data from experiments performed on a Ford engine. 

Chapter 4 started with a discussion of LPV time-delay systems. We presented a 

brief survey of existing methods dealing with the analysis and control of time-delays 

systems and LPV time-delay systems in particular. Stability of time-delay systems 

using Lyapunov based methods is analyzed either using the delay-independent con­

ditions or the delay-dependent conditions. Most of the existing results for synthe­

sis of Hoc output feedback controllers for LPV time-delay systems use the delay-

independent criteria. In-depth study revealed the conservativeness of these existing 
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controller synthesis conditions. Hence, we proposed the use of delay-dependent cri­

teria based Lyapunov-Krasovskii functional to analyze the stability and H^ norm-

based performance of LPV time-delay systems. The proposed approach can tackle 

parameter-varying delays as well as fast varying delays where the rate of change of de­

lay variation is not restricted to unity. Substitution of the closed-loop matrices in the 

analysis conditions in order to derive the synthesis conditions resulted in a bi-linear 

matrix inequality. To alleviate this problem the analysis conditions were relaxed by 

introducing the so called slack variables. We proposed a clever use of the slack vari­

ables which leads to reduced conservativeness and a form better suited to developing 

controller synthesis conditions. Finally we derived conditions for the existence of a 

state-feedback controller and an time-delayed output-feedback controller in terms of 

linear matrix inequalities. It is shown in simulation using numerical examples from 

literature that our proposed method may lead to performance improvements for the 

state-feedback controller designed. The results presented for the design of output-

feedback based controllers utilizing the delay-dependent conditions are the first in 

literature. To demonstrate the viability of the presented output-feedback results we 

used the fueling control in SI engines as an application. We derived the LPV system 

representation for the air and fuel path dynamics in an SI engine. It was shown that 

these dynamics constitute an LPV system with a parameter-varying time-delay with 

engine speed as the scheduling parameter. The novel results presented were thus 

successfully validated. 

5.2 Future Research Directions 

In this section we give directions for future research work based on the findings 

and learning from this thesis. 
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• The novel model-based low cost solution to the problem of ethanol blend esti­

mation proposed in this work makes use of the steady state operating conditions 

for the engine. The implementation aspect of the proposed method requires an 

additional effort in terms of extracting steady state or quasi-steady state data 

from a normal street drive data. The steady-state model developed in this thesis 

can be further extended to non-steady state conditions and making possible the 

prediction of percentage of ethanol in the blend based on a normal street drive 

data. One suggested way of accomplishing this is the use of manifold pressure 

sensor. 

• The methodology presented in chapter 2 proposed the use of the length of the 

vector to predict ethanol percentage. This vector based approach can be used 

to address any sensor measurement inaccuracies/uncertainties by looking at the 

direction of the vector along with the length. This can provide an additional 

diagnostic capability which could be integrated as a part of current on-board 

diagnostics algorithms. 

• Manifold pressure sensor based algorithm for ethanol estimation relies on ac­

curate modeling of the volumetric efficiency of an SI engine. The volumetric 

efficiency depends on ethanol content in the fuel and ambient humidity among 

other more obvious factors. Studying the effects of changing ambient humid­

ity as well as changing ethanol content on the volumetric efficiency and hence 

ethanol estimation provides a new direction for future research work. 

• Ethanol blend estimation is important among other factors, to achieve stoi­

chiometric air-fuel ratio control. Future work utilizing the knowledge of the 

estimated ethanol content in the fuel blend would include developing a gain-

scheduled fueling controller. In one of the current works at the UH-ECRL we 

plan to investigate a universal fueling control strategy for use in flex-fuel vehicles 

independent of the fuel type. 
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• In chapter 4 we derived conditions for existence of an output-feedback con­

troller using the delay-dependent Lyapunov-Krasovskii functional. The choice 

of Lyapunov-Krasovskii functional was rather standard. This work can be ex­

tended further by investigating the use of other forms of Lyapunov-Krasovskii 

functionals. More specifically one can look at Lyapunov-Krasovskii function­

a l with input dynamics so that the delay at the input would not have to be 

transformed to a delay in the state. 

• The output feedback controller proposed for LPV time-delay systems included 

delayed dynamics. Developing LMI based synthesis conditions leading to an 

output-feedback controller with no delay in its states could be a topic of future 

research. 
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